408 research outputs found

    Infrared High-Resolution Spectroscopy of Post-AGB Circumstellar Disks. I. HR 4049 - The Winnowing Flow Observed?

    Get PDF
    High-resolution infrared spectroscopy in the 2.3-4.6 micron region is reported for the peculiar A supergiant, single-lined spectroscopic binary HR 4049. Lines from the CO fundamental and first overtone, OH fundamental, and several H2O vibration-rotation transitions have been observed in the near-infrared spectrum. The spectrum of HR 4049 appears principally in emission through the 3 and 4.6 micron region and in absorption in the 2 micron region. The 4.6 micron spectrum shows a rich 'forest' of emission lines. All the spectral lines observed in the 2.3-4.6 micron spectrum are shown to be circumbinary in origin. The presence of OH and H2O lines confirm the oxygen-rich nature of the circumbinary gas which is in contrast to the previously detected carbon-rich material. The emission and absorption line profiles show that the circumbinary gas is located in a thin, rotating layer near the dust disk. The properties of the dust and gas circumbinary disk and the spectroscopic orbit yield masses for the individual stars, M_AI~0.58 Msolar and M_MV~0.34 Msolar. Gas in the disk also has an outward flow with a velocity of \gtrsim 1 km/s. The severe depletion of refractory elements but near-solar abundances of volatile elements observed in HR 4049 results from abundance winnowing. The separation of the volatiles from the grains in the disk and the subsequent accretion by the star are discussed. Contrary to prior reports, the HR 4049 carbon and oxygen isotopic abundances are typical AGB values: 12C/13C=6^{+9}_{-4} and 16O/17O>200.Comment: 42 pages, 14 figures, Accepted by Ap

    Variability and nature of the binary in the Red Rectangle Nebula

    Get PDF
    We present new observations of the central binary inside the Red Rectangle nebula. The detection of zinc in the optical spectrum confirms that the peculiar photospheric abundances are due to accretion of circumstellar gas. Grey brightness variations with the orbital period are observed. They are interpreted as being due to the variation of the scattering angle with orbital phase. The small orbital separation of the system is not compatible with previous normal evolution of the primary on the AGB. We point out the similarity of the orbital history of this and other similar systems with those of some close Barium stars and suggest that the nonzero eccentricity of the orbit is the result of tidal interaction with the circumbinary disk.Comment: 4 pages, 3 figures, A&A Letters accepte

    The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps

    Get PDF
    The disks around Herbig Ae/Be stars are commonly divided into group I and group II based on their far-infrared spectral energy distribution, and the common interpretation for that is flared and flat disks. Recent observations suggest that many flaring disks have gaps, whereas flat disks are thought to be gapless. The different groups of objects can be expected to have different structural signatures in high-angular-resolution data. Over the past 10 years, the MIDI instrument on the Very Large Telescope Interferometer has collected observations of several tens of protoplanetary disks. We model the large set of observations with simple geometric models. A population of radiative-transfer models is synthesized for interpreting the mid-infrared signatures. Objects with similar luminosities show very different disk sizes in the mid-infrared. Restricting to the young objects of intermediate mass, we confirm that most group I disks are in agreement with being transitional. We find that several group II objects have mid-infrared sizes and colors overlapping with sources classified as group I, transition disks. This suggests that these sources have gaps, which has been demonstrated for a subset of them. This may point to an intermediate population between gapless and transition disks. Flat disks with gaps are most likely descendants of flat disks without gaps. Gaps, potentially related to the formation of massive bodies, may therefore even develop in disks in a far stage of grain growth and settling. The evolutionary implications of this new population could be twofold. Either gapped flat disks form a separate population of evolved disks, or some of them may further evolve into flaring disks with large gaps. The latter transformation may be governed by the interaction with a massive planet, carving a large gap and dynamically exciting the grain population in the disk.Comment: 24 pages, 11 figures, A&A in pres

    ISO spectroscopy of circumstellar dust in 14 Herbig Ae/Be systems: towards an understanding of dust processing

    Get PDF
    We present Infrared Space Observatory (ISO) spectra of fourteen isolated Herbig Ae/Be (HAEBE) stars, to study the characteristics of their circumstellar dust. These spectra show large star-to-star differences, in the emission features of both carbon-rich and oxygen-rich dust grains. The IR spectra were combined with photometric data ranging from the UV through the optical into the sub-mm region. We defined two key groups, based upon the spectral shape of the infrared region. The derived results can be summarized as follows: (1) the continuum of the IR to sub-mm region of all stars can be reconstructed by the sum of a power-law and a cool component, which can be represented by a black body. Possible locations for these components are an optically thick, geometrically thin disc (power-law component) and an optically thin flared region (black body); (2) all stars have a substantial amount of cold dust around them, independent of the amount of mid-IR excess they show; (3) also the near-IR excess is unrelated to the mid-IR excess, indicating different composition/location of the emitting material; (4) remarkably, some sources lack the silicate bands; (5) apart from amorphous silicates, we find evidence for crystalline silicates in several stars, some of which are new detections; (6) PAH bands are present in at least 50% of our sample, and their appearance is slightly different from PAHs in the ISM; (7) PAH bands are, with one exception, not present in sources which only show a power-law continuum in the IR; their presence is unrelated to the presence of the silicate bands; (8) the dust in HAEBE stars shows strong evidence for coagulation; this dust processing is unrelated to any of the central star properties (such as age, spectral type and activity).Comment: 15 pages, accepted by A&

    The problematically short superwind of OH/IR stars - Probing the outflow with the 69 {\mu}m spectral band of forsterite

    Get PDF
    Spectra of OH/IR stars show prominent spectral bands of crystalline olivine (Mg(22x)_{(2-2x)}Fe(2x)_{(2x)}SiO4_{4}). To learn more about the timescale of the outflows of OH/IR stars, we study the spectral band of crystalline olivine at 69 {\mu}m. The 69 {\mu}m band is of interest because its width and peak wavelength position are sensitive to the grain temperature and to the exact composition of the crystalline olivine. With Herschel/PACS, we observed the 69 {\mu}m band in the outflow of 14 OH/IR stars. By comparing the crystalline olivine features of our sample with those of model spectra, we determined the size of the outflow and its crystalline olivine abundance. The temperature indicated by the observed 69 {\mu}m bands can only be reproduced by models with a geometrically compact superwind (RSWR_{\rm{SW}}\lesssim 2500 AU = 1400 R_{*}).This means that the superwind started less than 1200 years ago (assuming an outflow velocity of 10 km/s). The small amount of mass lost in one superwind and the high progenitor mass of the OH/IR stars introduce a mass loss and thus evolutionary problem for these objects, which has not yet been understood.Comment: Accepted by A&

    Dusty shells surrounding the carbon variables S Scuti and RT Capricorni

    Full text link
    For the Mass-loss of Evolved StarS (MESS) programme, the unprecedented spatial resolution of the PACS photometer on board the Herschel space observatory was employed to map the dusty environments of asymptotic giant branch (AGB) and red supergiant (RSG) stars. Among the morphologically heterogeneous sample, a small fraction of targets is enclosed by spherically symmetric detached envelopes. Based on observations in the 70 {\mu}m and 160 {\mu}m wavelength bands, we investigated the surroundings of the two carbon semiregular variables S Sct and RT Cap, which both show evidence for a history of highly variable mass-loss. S Sct exhibits a bright, spherically symmetric detached shell, 138" in diameter and co-spatial with an already known CO structure. Moreover, weak emission is detected at the outskirts, where the morphology seems indicative of a mild shaping by interaction of the wind with the interstellar medium, which is also supported by the stellar space motion. Two shells are found around RT Cap that were not known so far in either dust emission or from molecular line observations. The inner shell with a diameter of 188" shows an almost immaculate spherical symmetry, while the outer ~5' structure is more irregularly shaped. MoD, a modification of the DUSTY radiative transfer code, was used to model the detached shells. Dust temperatures, shell dust masses, and mass-loss rates are derived for both targets

    The composition of circumstellar gas and dust in 51 Oph

    Get PDF
    We analyze ISO archive data of the nearby bright emission-line star 51 Oph, previously classified as a proto-planetary system similar to beta Pic. The infrared spectrum reveals the presence of gas-phase emission bands of hot (approx 850 K) CO, CO_2, H_2O and NO. In addition to this, partially crystalline silicate dust is present. The solid-state bands and the energy distribution are indicative of dust that has formed recently, rather than of debris dust. The presence of hot molecular gas and the composition of the circumstellar dust are highly unusual for a young star and are reminiscent of what is found around evolved (AGB) stars, although we exclude the possibility of 51 Oph belonging to this group. We suggest several explanations for the nature of 51 Oph, including a recent episode of mass loss from a Be star, and the recent destruction of a planet-sized body around a young star.Comment: 4 pages, 3 figures, accepted by A&A (letters

    Large-scale environments of binary AGB stars probed by Herschel. II: Two companions interacting with the wind of pi1 Gruis

    Full text link
    Context. The Mass loss of Evolved StarS (MESS) sample observed with PACS on board the Herschel Space Observatory revealed that several asymptotic giant branch (AGB) stars are surrounded by an asymmetric circumstellar envelope (CSE) whose morphology is most likely caused by the interaction with a stellar companion. The evolution of AGB stars in binary systems plays a crucial role in understanding the formation of asymmetries in planetary nebul{\ae} (PNe), but at present, only a handful of cases are known where the interaction of a companion with the stellar AGB wind is observed. Aims. We probe the environment of the very evolved AGB star π1\pi^1 Gruis on large and small scales to identify the triggers of the observed asymmetries. Methods. Observations made with Herschel/PACS at 70 μ\mum and 160 μ\mum picture the large-scale environment of π1\pi^1 Gru. The close surroundings of the star are probed by interferometric observations from the VLTI/AMBER archive. An analysis of the proper motion data of Hipparcos and Tycho-2 together with the Hipparcos Intermediate Astrometric Data help identify the possible cause for the observed asymmetry. Results. The Herschel/PACS images of π1\pi^1 Gru show an elliptical CSE whose properties agree with those derived from a CO map published in the literature. In addition, an arc east of the star is visible at a distance of 3838^{\prime\prime} from the primary. This arc is most likely part of an Archimedean spiral caused by an already known G0V companion that is orbiting the primary at a projected distance of 460 au with a period of more than 6200 yr. However, the presence of the elliptical CSE, proper motion variations, and geometric modelling of the VLTI/AMBER observations point towards a third component in the system, with an orbital period shorter than 10 yr, orbiting much closer to the primary than the G0V star.Comment: 13 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    Resolving the compact dusty discs around binary post-AGB stars using N-band interferometry

    Get PDF
    We present the first mid-IR long baseline interferometric observations of the circumstellar matter around binary post-AGB stars. Two objects, SX Cen and HD 52961, were observed using the VLTI/MIDI instrument during Science Demonstration Time. Both objects are known binaries for which a stable circumbinary disc is proposed to explain the SED characteristics. This is corroborated by our N-band spectrum showing a crystallinity fraction of more than 50 % for both objects, pointing to a stable environment where dust processing can occur. Surprisingly, the dust surrounding SX Cen is not resolved in the interferometric observations providing an upper limit of 11 mas (or 18 AU at the distance of this object) on the diameter of the dust emission. This confirms the very compact nature of its circumstellar environment. The dust emission around HD 52961 originates from a very small but resolved region, estimated to be ~ 35 mas at 8 micron and ~ 55 mas at 13 micron. These results confirm the disc interpretation of the SED of both stars. In HD 52961, the dust is not homogeneous in its chemical composition: the crystallinity is clearly concentrated in the hotter inner region. Whether this is a result of the formation process of the disc, or due to annealing during the long storage time in the disc is not clear.Comment: 12 pages, 10 figures, accepted for publication in A &

    New SPB stars in the field of the young open cluster NGC 2244 discovered by the MOST photometric satellite

    Get PDF
    During two weeks of nearly continuous optical photometry of the young open cluster NGC 2244 obtained by the MOST satellite, we discovered two new SPB stars, GSC 00154-00785 and GSC 00154-01871. We present frequency analyses of the MOST light curves of these stars, which reveal two oscillation frequencies (0.61 and 0.71 c/d) in GSC 00154-00785 and two (0.40 and 0.51 c/d) in GSC 00154-01871. These frequency ranges are consistent with g-modes of 2\ell \leq 2 excited in models of main-sequence or pre-main-sequence (PMS) stars of masses 4.5 - 5 MM_{\odot} and solar composition (X,Z)=(0.7,0.02)(X, Z)= (0.7, 0.02). Published proper motion measurements and radial velocities are insufficient to establish unambiguously cluster membership for these two stars. However, the PMS models which fit best their eigenspectra have ages consistent with NGC 2244. If cluster membership can be confirmed, these would be the first known PMS SPB stars, and would open a new window on testing asteroseismically the interior structures of PMS stars.Comment: accepted for publication in MNRA
    corecore