108 research outputs found

    Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System

    Get PDF
    The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species

    Differential actions of m and n cholinergic agonists on the brainstem activating system

    Full text link
    The differential actions of i.v. arecoline and nicotine were determined on neocortical and limbic system EEG activation in acute rostral and caudal midbrain transected cats. All animals were prepared under diethyl ether anesthesia and after surgery, paralyzed with decamethonium and maintained on artificial respiration. The peripheral effects of these cholinergic agonists were reduced by methyl atropine (250 [mu]g/kg ) and/or trimethidinium (1 mg/kg) pretreatment.In the caudal midbrain transected preparation, nicotine (20-40 [mu]g/kg) induced marked EEG activation in both the neocortex and hippocampus. After bilateral lesions of the midbrain reticular formation in the same preparation, EEG activation was not observed with nicotine in doses up to 100 [mu]g/kg. The EEG effects of nicotine were blocked by atropine (1 mg/kg) and mecamylamine (1 mg/kg) but not trimethidinium (1 mg/kg). In the rostral midbrain transected preparation no EEG activation was noted with nicotine in doses up to 100 [mu]g/kg. Sporadic sharp waves appeared in the hippocampus with the larger doses indicating a convulsant site of action above the level of transection.Arecoline induced dissociation of the EEG in the hippocampus and neocortex in doses of 20-40 [mu]g/kg in the rostral midbrain transected cat. Marked hippocampal slow "arousal" waves with no desynchronization of the neocortical EEG were seen. These effects of arecoline were blocked by atropine. In the caudal midbrain preparation, even after bilateral lesions of the midbrain reticular formation which blocked nicotine activation, arecoline (20-40 [mu]g/kg) still induced hippocampal slow `arousal' waves without neocortical desynchronization. With doses of 100 [mu]g/kg of arecoline both neocortical and hippocampal EEG activation was noted.It is concluded that the site of nicotine on the rostral forebrain activating system is located primarily in the midbrain reticular formation, whereas arecoline acts on the midbrain reticular formation as well as above the level of the mesencephalon.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33004/1/0000388.pd

    Genomic and biological characterization of chiltepin yellow mosaic virus, a new tymovirus infecting Capsicum annuum var. aviculare in Mexico.

    Get PDF
    The characterization of viruses infecting wild plants is a key step towards understanding the ecology of plant viruses. In this work, the complete genomic nucleotide sequence of a new tymovirus species infecting chiltepin, the wild ancestor of Capsicum annuum pepper crops, in Mexico was determined, and its host range has been explored. The genome of 6,517 nucleotides has the three open reading frames described for tymoviruses, putatively encoding an RNA-dependent RNA polymerase, a movement protein and a coat protein. The 5′ and 3′ untranslated regions have structures with typical signatures of the tymoviruses. Phylogenetic analyses revealed that this new virus is closely related to the other tymoviruses isolated from solanaceous plants. Its host range is mainly limited to solanaceous species, which notably include cultivated Capsicum species. In the latter, infection resulted in a severe reduction of growth, indicating the potential of this virus to be a significant crop pathogen. The name of chiltepin yellow mosaic virus (ChiYMV) is proposed for this new tymovirus

    Effects of d -amphetamine, scopolamine, chlordiazepoxide and diphenylhydantoin on self-stimulation behavior and brain acetylcholine

    Full text link
    The effects of d-amphetamine (0.25–8), scopolamine (0.25–8), chlordiazepoxide (2.5–40), and diphenylhydantoin (25–75), given i.p. or s.c. on a mg/kg basis, were studied on self-stimulation behavior in the male albino rat. The dose-effect relationships, the role of baseline rates of responding and their effects on brain acetylcholine (ACh) were determined in rats trained to self-stimulate for electrical reward in the lateral posterior hypothalamus. The effects of d -amphetamine were both dose and baseline-rate dependent. Low-moderate doses (0.5–2.0 mg/kg inclusive) facilitated self-stimulation and larger doses (2.0 to 8.0 mg/kg) depressed responding. Baseline rates before d -amphetamine administration were extremely important in the effect observed. Low rates of responding were facilitated and high rates were depressed by this agent. The effects of scopolamine in a wide range of dosage were less consistent. A small dose (0.5 mg/kg) facilitated only transiently self-stimulation and larger doses (1–8 mg/kg) tended to depress this behavior. Baseline rate effects were less important but high-rate responders were usually depressed by scopolamine.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46380/1/213_2004_Article_BF00414409.pd

    Impact of Human Management on the Genetic Variation of Wild Pepper, Capsicum annuum var. glabriusculum

    Get PDF
    Management of wild peppers in Mexico has occurred for a long time without clear phenotypic signs of domestication. However, pre-domestication management could have implications for the population's genetic richness. To test this hypothesis we analysed 27 wild (W), let standing (LS) and cultivated (C) populations, plus 7 samples from local markets (LM), with nine polymorphic microsatellite markers. Two hundred and fifty two alleles were identified, averaging 28 per locus. Allele number was higher in W, and 15 and 40% less in LS and C populations, respectively. Genetic variation had a significant population structure. In W populations, structure was associated with ecological and geographic areas according to isolation by distance. When LM and C populations where included in the analysis, differentiation was no longer apparent. Most LM were related to distant populations from Sierra Madre Oriental, which represents their probable origin. Historical demography shows a recent decline in all W populations. Thus, pre-domestication human management is associated with a significant reduction of genetic diversity and with a loss of differentiation suggesting movement among regions by man. Measures to conserve wild and managed populations should be implemented to maintain the source and the architecture of genetic variation in this important crop relative

    Neonatal cerebrovascular autoregulation.

    Get PDF
    Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk
    corecore