7,111 research outputs found

    Climate change amplifies plant invasion hotspots in Nepal

    Get PDF
    Aim Climate change has increased the risk of biological invasions, particularly by increasing the climatically suitable regions for invasive alien species. The distribution of many native and invasive species has been predicted to change under future climate. We performed species distribution modelling of invasive alien plants (IAPs) to identify hotspots under current and future climate scenarios in Nepal, a country ranked among the most vulnerable countries to biological invasions and climate change in the world. Location Nepal. Methods We predicted climatically suitable niches of 24 out of the total 26 reported IAPs in Nepal under current and future climate (2050 for RCP 6.0) using an ensemble of species distribution models. We also conducted hotspot analysis to highlight the geographic hotspots for IAPs in different climatic zones, land cover, ecoregions, physiography and federal states. Results Under future climate, climatically suitable regions for 75% of IAPs will expand in contrast to a contraction of the climatically suitable regions for the remaining 25% of the IAPs. A high proportion of the modelled suitable niches of IAPs occurred on agricultural lands followed by forests. In aggregation, both extent and intensity (invasion hotspots) of the climatically suitable regions for IAPs will increase in Nepal under future climate scenarios. The invasion hotspots will expand towards the high‐elevation mountainous regions. In these regions, land use is rapidly transforming due to the development of infrastructure and expansion of tourism and trade. Main conclusions Negative impacts on livelihood, biodiversity and ecosystem services, as well as economic loss caused by IAPs in the future, may be amplified if preventive and control measures are not immediately initiated. Therefore, the management of IAPs in Nepal should account for the vulnerability of climate change‐induced biological invasions into new areas, primarily in the mountains

    Gait Analysis of Horses for Lameness Detection with Radar Sensors

    Get PDF
    This paper presents the preliminary investigation of the use of radar signatures to detect and assess lameness of horses and its severity. Radar sensors in this context can provide attractive contactless sensing capabilities, as a complementary or alternative technology to the current techniques for lameness assessment using video-graphics and inertial sensors attached to the horses' body. The paper presents several examples of experimental data collected at the Weipers Centre Equine Hospital at the University of Glasgow, showing the micro- Doppler signatures of horses and preliminary results of their analysis

    Ending Neglect of older people in the response to Humanitarian Emergencies

    Get PDF
    Older people make up a significant and growing number of those affected by humanitarian crises, yet they are often not sought out or prioritised within the humanitarian response. Humanitarian agencies, donors, and international bodies neglect older people's health and nutrition. The gaps in knowledge and research about the needs of older people in emergencies are considerable. Older people are not monitored in emergencies and they are not prioritised despite evidence of disproportionate mortality and morbidity in this group. We call for policy changes by humanitarian agencies and donors to ensure that the needs of this vulnerable group are met

    Study of thermal conductivity design for thermal loaded geomaterials.

    Get PDF
    Soil thermal conductivity plays preponderant role in many geoengineering projects involving thermal effects, such as high voltage underground power cables, oil and gas pipelines, nuclear waste disposal facilities, ground heat energy storage and heat exchanger piles. A thorough understanding of thermal conductivity is necessary in heat transfer modelling. Depending upon the application and desired purpose of such projects, materials with either high or low thermal conductivity are used. Materials with high thermal conductivity are desirable in cases such as high voltage underground power cables to dissipate the generated heat rapidly to the surrounding soil. On the other hand, ground heat energy storage needs materials with low thermal conductivity and high heat capacity to hinder the heat energy loss. In this study, high conductive backfill materials for underground power cables were analysed based on existing knowledge of heat transfer mechanism in granular media and models of soil thermal conductivity in both dry and wet conditions (Yun and Santamarina, 2007, Cortes and Santamarina, 2009). Several researchers have developed theoretical, empirical and semi-empirical models to estimate the thermal conductivity of natural soils and crushed rock materials based on various factors such as particle shape and size, particle distribution, mineral composition, dry density, and wate

    Simulation of flood flow in a river system using artificial neural networks

    No full text
    International audienceArtificial neural networks (ANNs) provide a quick and flexible means of developing flood flow simulation models. An important criterion for the wider applicability of the ANNs is the ability to generalise the events outside the range of training data sets. With respect to flood flow simulation, the ability to extrapolate beyond the range of calibrated data sets is of crucial importance. This study explores methods for improving generalisation of the ANNs using three different flood events data sets from the Neckar River in Germany. An ANN-based model is formulated to simulate flows at certain locations in the river reach, based on the flows at upstream locations. Network training data sets consist of time series of flows from observation stations. Simulated flows from a one-dimensional hydrodynamic numerical model are integrated for network training and validation, at a river section where no measurements are available. Network structures with different activation functions are considered for improving generalisation. The training algorithm involved backpropagation with the Levenberg-Marquardt approximation. The ability of the trained networks to extrapolate is assessed using flow data beyond the range of the training data sets. The results of this study indicate that the ANN in a suitable configuration can extend forecasting capability to a certain extent beyond the range of calibrated data sets

    The predictive model for strength of inclined screws as shear connection in timber-concrete composite floor

    Full text link
    Interest in timber-concrete composite (TCC) floors has increased over the last 30 years. TCC technology relies on timber and concrete members acting compositely together. Both timber and concrete exhibit a quite brittle behaviour in bending/tension and compression respectively whilst the shear connection is identified as the only contributor of ductile behaviour. Therefore, the strength, stiffness and arrangement of the shear connection play a crucial role in the structural design of TCC. There are only few investigations on analytical closed-form equation to predict the stiffness and strength of TCC joints as input values to design a partially composite floor. For example, Johansen's yield theory was adopted as European yield model in Eurocode 5. However, the equations are limited to vertically inserted dowels or screws and Eurocode 5 recommends that the strength and stiffness of unconventional joints should be determined by push-out tests. Previous investigations reported that the inclined shear connector significantly increase the initial stiffness and ultimate strength of the TCC joints and consequently composite floor. This paper presents a model for the strength ofTCC joint using crossed (±45°) proprietary screws (SFS Intec). The Johansen yield theory is extended to derive the strenght model of TCC joint with crossed (±45°) screws which are loaded in tension and compression. The model is an upper bound plastic collapse model that assumes the behaviour of timber and screw perfectly plastic with undamaged concrete. The failure modes considers of yield of screw, in tension or shear, and some combined modes assuming screw withdrawal, lateral crushing of the timber and the development of plastic hinges in the screw. The experimental aspect of the research consists of push-out tests and aims to verify the strength model of TCC joints with inclined screws. The failure modes are also investigated. The model seems to be reasonably accurate in predicting both the characteristic strength and failure mode. This research suggests the model to facilitate the design of inclined screw shear connections for TCC construction. © 2013 Taylor & Francis Group

    Microwave and Millimeter Wave Nondestructive Evaluation of the Space Shuttle External Tank Insulating Foam

    Get PDF
    The Space Shuttle Columbia s catastrophic failure has been attributed to a piece of external fuel tank insulating SOFI (Spray On Foam Insulation) foam striking the leading edge of the left wing of the orbiter causing significant damage to some of the protecting heat tiles. The accident emphasizes the growing need to develop effective, robust and life-cycle oriented methods of nondestructive testing and evaluation (NDT&E) of complex conductor-backed insulating foam and protective acreage heat tiles used in the space shuttle fleet and in future multi-launch space vehicles. The insulating SOFI foam is constructed from closed-cell foam. In the microwave regime this foam is in the family of low permittivity and low loss dielectric materials. Near-field microwave and millimeter wave NDT methods were one of the techniques chosen for this purpose. To this end several flat and thick SOFI foam panels, two structurally complex panels similar to the external fuel tank and a "blind" panel were used in this investigation. Several anomalies such as voids and disbonds were embedded in these panels at various locations. The location and properties of the embedded anomalies in the "blind" panel were not disclosed to the investigating team prior to the investigation. Three frequency bands were used in this investigation covering a frequency range of 8-75 GHz. Moreover, the influence of signal polarization was also investigated. Overall the results of this investigation were very promising for detecting the presence of anomalies in different panels covered with relatively thick insulating SOFI foam. Different types of anomalies were detected in foam up to 9 in thick. Many of the anomalies in the more complex panels were also detected. When investigating the blind panel no false positives were detected. Anomalies in between and underneath bolt heads were not easily detected. This paper presents the results of this investigation along with a discussion of the capabilities of the method used

    Activities Recognition and Fall Detection in Continuous Data Streams Using Radar Sensor

    Get PDF
    This student paper presents a Quadratic-kernel Support Vector Machine (SVM) based FMCW (Frequency Modulated Continuous Wave) radar system to recognize daily activities and detect fall accidents. Data collected in this work is divided into two different collection modes, namely, snapshots mode (different activities individually collected in isolation) and continuous activity mode (continuous streams of activities collected one after the other). For the continuous activity streams, a sliding window approach with 4s duration and 70% overlapping has achieved 84.7% classification accuracy and subsequent improvement of 2.6% has been proved by using Sequential Forward Selection (SFS) on six participants to identify an optimal feature set. A ‘tracking’ graph has been utilized to verify that the radar system can correctly identify falls as critical events among the other activities

    Occurrence and diversity of Xanthomonas campestris pv. campestris in vegetable brassica fields in Nepal

    Get PDF
    Black rot caused by Xanthomonas campestris pv. campestris was found in 28 sampled cabbage fields in five major cabbage-growing districts in Nepal in 2001 and in four cauliflower fields in two districts and a leaf mustard seed bed in 2003. Pathogenic X. campestris pv. campestris strains were obtained from 39 cabbage plants, 4 cauliflower plants, and 1 leaf mustard plant with typical lesions. Repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) using repetitive extragenic palindromic, enterobacterial repetitive intergenic consensus, and BOX primers was used to assess the genetic diversity. Strains were also race typed using a differential series of Brassica spp. Cabbage strains belonged to five races (races 1, 4, 5, 6, and 7), with races 4, 1, and 6 the most common. All cauliflower strains were race 4 and the leaf mustard strain was race 6. A dendrogram derived from the combined rep-PCR profiles showed that the Nepalese X. campestris pv. campestris strains clustered separately from other Xanthomonas spp. and pathovars. Race 1 strains clustered together and strains of races 4, 5, and 6 were each split into at least two clusters. The presence of different races and the genetic variability of the pathogen should be considered when resistant cultivars are bred and introduced into regions in Nepal to control black rot of brassicas

    Bmi1+ Progenitor Cell Dynamics in Murine Cornea During Homeostasis and Wound Healing

    Get PDF
    The outermost layer of the eye, the cornea, is renewed continuously throughout life. Stem cells of the corneal epithelium reside in the limbus at the corneal periphery and ensure homeostasis of the central epithelium. However, in young mice, homeostasis relies on cells located in the basal layer of the central corneal epithelium. Here, we first studied corneal growth during the transition from newborn to adult and assessed Keratin 19 (Krt19) expression as a hallmark of corneal maturation. Next, we set out to identify a novel marker of murine corneal epithelial progenitor cells before, during and after maturation, and we found that Bmi1 is expressed in the basal epithelium of the central cornea and limbus. Furthermore, we demonstrated that Bmi1+ cells participated in tissue replenishment in the central cornea. These Bmi1+ cells did not maintain homeostasis of the cornea for more than 3 months, reflecting their status as progenitor rather than stem cells. Finally, after injury, Bmi1+ cells fueled homeostatic maintenance, whereas wound closure occurred via epithelial reorganization. Stem Cells 2018
    corecore