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Abstract
Aim: Climate	change	has	increased	the	risk	of	biological	invasions,	particularly	by	in-
creasing	the	climatically	suitable	regions	for	invasive	alien	species.	The	distribution	of	
many	native	and	invasive	species	has	been	predicted	to	change	under	future	climate.	
We	performed	species	distribution	modelling	of	invasive	alien	plants	(IAPs)	to	iden-
tify	hotspots	under	current	and	future	climate	scenarios	in	Nepal,	a	country	ranked	
among	the	most	vulnerable	countries	to	biological	 invasions	and	climate	change	in	
the	world.
Location: Nepal.
Methods: We	predicted	climatically	suitable	niches	of	24	out	of	the	total	26	reported	
IAPs	in	Nepal	under	current	and	future	climate	(2050	for	RCP	6.0)	using	an	ensem-
ble	of	species	distribution	models.	We	also	conducted	hotspot	analysis	to	highlight	
the	geographic	hotspots	for	IAPs	in	different	climatic	zones,	land	cover,	ecoregions,	
physiography	and	federal	states.
Results: Under	future	climate,	climatically	suitable	regions	for	75%	of	IAPs	will	ex-
pand	in	contrast	to	a	contraction	of	the	climatically	suitable	regions	for	the	remaining	
25%	of	the	IAPs.	A	high	proportion	of	the	modelled	suitable	niches	of	IAPs	occurred	
on	agricultural	 lands	followed	by	forests.	 In	aggregation,	both	extent	and	intensity	
(invasion	hotspots)	of	the	climatically	suitable	regions	for	IAPs	will	increase	in	Nepal	
under	future	climate	scenarios.	The	invasion	hotspots	will	expand	towards	the	high-
elevation	mountainous	regions.	In	these	regions,	land	use	is	rapidly	transforming	due	
to	the	development	of	infrastructure	and	expansion	of	tourism	and	trade.
Main conclusions: Negative	impacts	on	livelihood,	biodiversity	and	ecosystem	ser-
vices,	 as	well	 as	 economic	 loss	 caused	 by	 IAPs	 in	 the	 future,	may	 be	 amplified	 if	
preventive	and	control	measures	are	not	immediately	initiated.	Therefore,	the	man-
agement	of	IAPs	in	Nepal	should	account	for	the	vulnerability	of	climate	change-in-
duced	biological	invasions	into	new	areas,	primarily	in	the	mountains.
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1  | INTRODUC TION

Biological	 invasions	 and	 climate	 change	 are	 two	 major	 drivers	 of	
biodiversity	 loss	and	ecosystem	service	change	worldwide	(Pecl	et	
al.,	2009;	Urban,	2015;	Vilà	&	Hulme,	2017;	Walther	et	al.,	2009).	
Invasive	alien	plants	(IAPs;	sensu	Pyšek	et	al.,	2014)	pose	the	great-
est	threats	to	natural	ecosystems,	human	health,	economy,	agricul-
ture	and	 fisheries	 (Pimentel,	Zuniga,	&	Morrison,	2009;	Vilà	et	al.,	
2010;	Vilà	&	Hulme,	2017).	The	 threat	and	 loss	constituted	by	 in-
vasive	species	are	exacerbated	by	climate	change	through	multiple	
mechanisms	including	the	removal	of	climate	barriers	for	establish-
ment	and	the	spread	of	many	invasive	species	(Bradley,	Blumenthal,	
Wilcove,	 &	 Ziska,	 2010;	 Hellmann,	 Byers,	 Bierwagen,	 &	 Dukes,	
2008).	 For	 example,	 Petitpierre	 et	 al.	 (2017)	 have	 shown	 that	 the	
upslope	spread	of	the	lowland	IAPs	to	mountains	 is	 limited	by	low	
temperatures	in	the	mountains.	Yet,	climate	change	will	shift	regions	
of	 optimal	 suitability	 for	 these	 IAPs	 from	 lowlands	 to	 highlands.	
Invasive	species	have	a	greater	capacity	to	shift	 their	niches	more	
rapidly	than	native	species,	and	they	are	more	likely	to	adapt	to	new	
climatic	conditions	faster	(Dukes	&	Mooney,	2004;	Hellmann	et	al.,	
2008).	The	climatic	niche	shift	has	been	demonstrated	as	one	of	the	
mechanisms	used	by	IAPs	to	spread	rapidly	into	introduced	ranges	
(e.g.,	Treier	et	al.,	2009;	Gallagher,	Beaumont,	Hughes,	&	Leishman,	
2017).	Furthermore,	 the	 IAPs	benefit	 from	global	warming	and	at-
mospheric	CO2	enrichment	more	than	native	plants	(Liu	et	al.,	2013;	
Verlinden	&	Nijs,	2010).	Therefore,	an	integrated	understanding	of	
biological	invasions	and	climate	change	is	necessary	for	the	manage-
ment	of	IAPs.

Projected	changes	in	climate	in	the	future	may	influence	the	dis-
tribution	of	many	native	and	invasive	species	(Bellard,	Bertelsmeier,	
Leadley,	Thuiller,	&	Courchamp,	2012;	Walther	et	al.,	2009).	At	the	
species	level,	climate	change	causes	range	expansions	of	many	inva-
sive	species	and	contraction	to	few	(Bellard	et	al.,	2013;	Bradley	et	
al.,	2010).	Therefore,	these	potential	changes	in	distribution	need	to	
be	incorporated	into	the	management	and	conservation	of	ecosys-
tems	and	biodiversity	in	the	face	of	biological	invasions	and	climate	
change	 (O'Donnell	et	al.,	2012).	A	better	understanding	of	 threats	
and	an	ability	to	accurately	predict	the	impacts	of	climate	change	on	
species	distribution	are	necessary	to	make	an	informed	decision	for	
biodiversity	conservation	(Pimm	et	al.,	2005).	This	will	help	to	min-
imize	the	threat	of	invasive	species	into	the	future	and	support	ef-
fective	conservation	efforts.	Although	the	impact	of	climate	change	
on	 the	distribution	of	multiple	 invasive	 species	 is	 known	 in	devel-
oped	 regions	 such	 as	 Australia,	North	America	 and	 Europe	 (Allen	
&	Bradley,	2016;	O'Donnell	et	al.,	2012),	little	is	known	about	how	
the	distribution	of	invasive	species	will	change	with	future	climatic	
changes	in	developing	countries	such	as	Nepal.

With	 the	 estimated	 annual	 cost	 of	US$	1.4	billion,	 due	 to	 bi-
ological	 invasions	 to	 Nepal's	 agriculture	 sector,	 Nepal	 is	 ranked	
among	the	topmost	countries	(ranked	3rd	out	of	124	countries)	 in	
terms	of	invasion	threats	to	agriculture	sectors	(Paini	et	al.,	2016).	
The	concentration	of	vertebrate	 species	 threatened	by	biological	

invasions	 is	 also	 high	 in	 the	 Indian	 subcontinent	 including	Nepal	
(Bellard,	Genovesi,	&	Jeschke,	2016).	Currently,	there	are	241	alien	
plants	and	animals	in	Nepal	and	45	of	them	are	considered	invasive	
(Shrestha,	 Budha,	Wong,	&	 Pagad,	 2018).	 These	 invasive	 species	
can	be	found	from	lowland	plains	 in	the	south	to	hills	and	moun-
tains	 in	 the	 north.	 Globally,	 mountain	 ecosystems	 are	 generally	
less	 invaded	 compared	 to	 the	 surrounding	 lowlands	 (McDougall	
et	al.,	2011).	However,	the	intensity	of	biological	invasions	is	likely	
to	increase	in	future	with	changing	climate	and	increasing	anthro-
pogenic	 disturbances	 in	 the	 mountains	 (Pauchard	 et	 al.,	 2016;	
Petitpierre	et	al.,	2017).	In	Nepal,	most	of	the	IAPs	are	found	below	
2,000	m	in	elevation	(Shrestha,	2016)	but	recent	studies	based	on	
field	observations	and	models	suggest	that	some	of	these	IAPs	are	
already	expanding	their	ranges	into	new	geographic	locations	at	a	
higher	elevation	(Lamsal,	Kumar,	Aryal,	&	Atreya,	2012;	Shrestha,	
Sharma,	Devkota,	Siwakoti,	&	Shrestha,	2018;	Thapa,	Chitale,	Rijal,	
Bisht,	&	Shrestha,	2018).

The	severity	of	threats	to	Nepal's	economy	and	ecosystems	from	
biological	 invasions	 is	 considered	 in	 national	 conservation	policies	
and	 sectoral	 conservation	 strategies	 such	 as	 the	 Plant	 Protection	
Act	 (2007),	National	Biodiversity	Strategy	and	Action	Plan	 (2014),	
Forestry	Sector	Strategy	(2016–2015)	and	National	Ramsar	Strategy	
and	 Action	 Plan	 (2018–2024).	 However,	 the	 implementation	 of	
these	policies	and	strategies	 is	very	poor,	partially	because	of	 the	
lack	of	scientific	knowledge	required	to	control	invasive	alien	species	
(MFSC,	2014;	Shrestha	et	al.,	2015).	National	Biodiversity	Strategy	
and	Action	Plan	(2014–2020)	has	identified	priorities	of	actions	for	
the	management	of	invasive	alien	species	that	includes,	among	oth-
ers,	 research	and	prioritization	of	problematic	 IAPs	 (MFSC,	2014).	
To	this	end,	this	study	is	an	important	contribution	to	enhance	the	
knowledge	and	understanding	of	invasive	species	by	identifying	po-
tentially	suitable	niches	for	24	IAPs	(out	of	reported	26	species)	 in	
Nepal	under	current	and	future	climate	using	an	ensemble	of	species	
distribution	models.

We	 also	 performed	 a	 hotspot	 analysis	 to	 identify	 areas	 suit-
able	 for	 a	maximum	number	of	 IAPs.	 In	biodiversity	 conservation,	
the	 concept	 of	 a	 biodiversity	 hotspot—an	 area	 with	 high	 species	
richness,	 endemism	 and	 threatened	 taxa—is	well	 established	 (e.g.,	
Myers,	Mittermeier,	Mittermeier,	Fonseca,	&	Kent,	2003).	Hotspot	
analysis	provides	a	framework	for	cost-effective	conservation	pro-
grammes,	 thus	 helping	 to	 prioritize	 conservation	 efforts	 (Myers,	
2004).	Similarly,	hotspot	analysis	can	help	streamline	management	
efforts	in	a	way	to	prevent,	eradicate	and	control	the	maximum	num-
ber	of	invasive	species	at	the	lowest	cost	possible	(Adhikari,	Tiwary,	
&	 Barik,	 2015;	 O'Donnell	 et	 al.,	 2012).	 Attempts	 at	 applying	 the	
hotspot	concept	to	biological	invasions	were	made	at	a	global	scale	
(Drake	&	Lodge,	2013),	according	to	country	(Australia	by	O'Donnell	
et	al.,	2012,	United	States	by	Allen	&	Bradley,	2016,	India	by	Adhikari	
et	al.,	2015)	and	according	to	the	local	scale	(Corangamite	Catchment	
in	Australia	by	Catford,	Vesk,	White,	&	Wintle,	2011),	using	different	
tools	 and	 techniques.	 In	 this	 study,	we	 used	 the	 invasion	 hotspot	
approach	to	identify	regions	with	high	concentrations	of	potentially	
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suitable	niches	for	multiple	IAPs	under	current	and	future	climate	in	
Nepal.	We	also	examined	changes	in	invasion	hotspots	according	to	
different	 land	covers,	climatic	zones,	physiographic	regions,	ecore-
gions	 and	 federal	 states.	 This	 study	 provides	 the	 first-ever	 com-
prehensive	 national-level	 assessment	 of	 biological	 invasions	 using	
occurrence	data	of	most	of	the	IAPs	found	in	Nepal.	By	highlighting	
the	geographic	hotspots	for	IAPs,	our	results	provide	wide-ranging	
evidence	of	current	and	future	risks	constituted	by	IAPs	at	the	na-
tional	scale.	The	results	of	this	study	will	be	important	when	consid-
ering	 cost-effective	 strategies	 for	managing	 IAPs	 and	will	 support	
long-term	 biodiversity	 conservation	 and	 sustainable	 development	
goals	in	Nepal.

2  | METHODS

2.1 | Invasive alien plants’ occurrence data

We	 selected	 24	 out	 of	 the	 total	 26	 species	 of	 IAPs	 reported	 in	
Nepal	(Shrestha,	2016;	Tiwari,	Adhikari,	Siwakoti,	&	Subedi,	2005)	
for	 the	modelling	exercise	 (Figure	1).	Location	 information	suffi-
cient	for	the	distribution	modelling	of	the	remaining	two	species	
(Myriophyllum aquaticum and Spergula arvensis)	is	not	yet	available.	
The	 description	 (name,	 family,	 native	 origin,	 functional	 group,	

distribution	range	and	mode	of	dispersal)	of	the	selected	species	
is	given	in	Table	1.	Four	of	the	modelled	species	(Chromolaena odo‐
rata,	Eichhornia crassipes,	Lantana camara and Mikania micrantha)	
are	 among	 the	100	of	 the	world's	worst	 invasive	 species	 (Lowe,	
Browne,	Boudjelas,	&	DePoorter,	2017).	Sixteen	of	the	modelled	
species	 are	 considered	 highly	 problematic	 species	 by	 the	 local	
people	 of	 Nepal	 due	 to	 their	 negative	 impacts	 on	 agriculture,	
local	livelihood	and	natural	ecosystems	(Shrestha,	Shrestha	et	al.,	
2018).	Modelled	 species	were	 introduced	 either	 deliberately	 for	
ornamental	 purpose	 (e.g.,	 L. camara,	 E. crassipes)	 or	 accidentally	
(e.g.,	Ageratina adenophora,	Parthenium hysterophorus)	to	Nepal	at	
various	times.

The	occurrence	data	were	collected	through	field	surveys	by	ex-
perts	 in	various	localities	of	Nepal	at	different	times	from	2013	to	
2018	(Shrestha,	2014;	Shrestha,	Joshi	et	al.,	2018;	Shrestha,	Kokh,	
&	Karki,	2016;	Siwakoti	et	al.,	2016).	The	number	of	occurrence	lo-
cations	for	each	species	ranged	from	25	(Leersia hexandra)	to	1,910	
(Bidens pilosa).	 Species	distributional	 data	often	display	 spatial	 au-
tocorrelation	 which	 has	 implications	 for	 predicting	 species	 occur-
rences	under	changing	environmental	conditions	(Dormann,	Grime,	
&	 Thompson,	 2000;	 Dormann,	 2007).	 We	 removed	 the	 multiple	
presence	locations	in	the	same	grid	of	~1	km2	spatial	resolution	and	
retained	only	one	unique	record	per	grid	by	applying	spatial	filtering	

F I G U R E  1  Occurrence	of	24	invasive	alien	plants	in	Nepal.	Each	dot	represents	geographic	coordinates	of	the	species
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using	 sdmtoolbox	 2.3	 (Brown,	 2014).	We	 also	 checked	differences	
in	Moran's	I	index	values	after	removing	the	multiple	records	using	
the	ape	package	in	r.	This	approach	reduces	spatial	autocorrelation,	
which	 could	 lead	 to	 overfitting	 the	 models	 and	 therefore	 reduce	
model	 performance	 (Boria,	 Olson,	 Goodman,	 &	 Anderson,	 2014).	
After	spatial	filtering,	the	total	number	of	occurrence	locations	com-
prising	24	species	was	reduced	from	17,682	records	to	10,951,	and	
these	were	then	used	for	modelling.

2.2 | Environmental variables

We	used	nineteen	bioclimatic	variables	with	a	spatial	resolution	of	30	
arcsec	(~1	×	1	km)	downloaded	from	worldclim	2	(http://world	clim.org;	
Fick	&	Hijmans,	2009).	The	current	bioclimatic	variables	were	computed	
from	monthly	values	of	minimum,	average	and	maximum	temperature	
and	monthly	precipitation	from	1970	to	2000	(Hijmans,	Cameron,	Parra,	
Jones,	 &	 Jarvis,	 2006).	 Pairwise	 diagnostic	 tools	 such	 as	 correlation	

TA B L E  1  Characteristic	features	of	the	studied	invasive	alien	plant	species	(Hara	&	Williams,	1979;	Hara,	Chater,	&	Williams,	1982;	
Shrestha,	2016;	Tiwari	et	al.,	2005)

Scientific name (family) Common name Growth form
Mode of 
reproduction Native range

First year of 
report in Nepal

Ageratina adenophora	(Spreng.)	R.M.King	&	
H.Rob.	(Asteraceae)

Crofton	weed Shrub Seed/vegetative Mexico 1952

Ageratum conyzoides	L.	(Asteraceae) Billygoat Annual	herb Seed Central	and	South	
America

1910

Ageratum houstonianum	Mill.	(Asteraceae) Blue	billygoat Annual	herb Seed Mexico	to	Central	
America

1929

Alternanthera philoxeroides	(Mart.)	Griseb.	
(Amaranthaceae)

Alligator	weed Perennial herb Vegetative South	America 1994

Amaranthus spinosus	L.	(Amaranthaceae) Spiny	pigweed Annual	herb Seed Tropical	Americas 1954

Argemone mexicana	L.	(Papaveraceae) Mexican	poppy Annual	herb Seed Tropical	Americas 1910

Bidens pilosa	L.	(Asteraceae) Black	jack Annual	herb Seed Tropical	Americas 1910

Chromolaena odorata	(L.)	R.M.King	&	H.Rob.	
(Asteraceae)

Siam	weed Shrub Seed/vegetative Mexico	to	South	
America

1825

Eichhornia crassipes	(Mart.)	Solms	
(Pontederiaceae)

Water	hyacinth Perennial herb Seed/vegetative South	America 1966

Erigeron karvinskianus	DC.	(Asteraceae) Karwinsky's	
fleabane

Perennial herb Seed/vegetative Mexico	to	Central	
America

1966

Galinsoga quadriradiata	Ruiz	&	Pav.	
(Asteraceae)

Shaggy	soldier Annual	herb Seed Mexico 1966

Hyptis suaveolens	(L.)	Poit.	(Lamiaceae) Bush	mint Annual	herb Seed Tropical	America 1956

Ipomoea carnea	Jacq.	(Convolvulaceae) Bush	morning	
glory

Shrub Seed/vegetative Mexico	to	South	
America

1966

Lantana camara	L.	(Verbenaceae) Lantana Shrub Seed/vegetative Central	and	South	
America

1848

Leersia hexandra	Sw.	(Poaceae) Southern	cut	
grass

Perennial herb Seed/vegetative Americas 1820

Mikania micrantha	Kunth.	(Asteraceae) Mile-a-minute Perennial vine Seed/vegetative Central	and	South	
America

1963

Mimosa pudica	L.	(Fabaceae) Sensitive	plant Perennial herb Seed Mexico	to	South	
America

1910

Oxalis latifolia	Kunth.	(Oxalidaceae) Purple	wood	
sorrel

Perennial herb Seed/vegetative Central	and	South	
America

1954

Parthenium hysterophorus	L.	(Asteraceae) Parthenium Annual	herb Seed Southern	USA	to	
South	America

1967

Pistia stratiotes	L.	(Araceae) Water	lettuce Perennial herb Seed/vegetative South	America 1952

Senna occidentalis	(L.)	Link	(Fabaceae) Coffee	senna Subshrub Seed Tropical	Americas 1910

Senna tora	(L.)	Roxb.	(Fabaceae) Sicklepod	senna Annual	herb Seed Central	America 1910

Spermacoce alata	Aubl.	(Rubiaceae) Broadleaf	
buttonweed

Perennial herb Seed/vegetative West	Indies	and	
Tropical	America

1966

Xanthium strumarium	L.	(Asteraceae) Cocklebur Annual	herb Seed South	America 1952

http://worldclim.org
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matrices	and	variance	 inflection	factors	 (VIFs)	can	be	used	to	detect	
multicollinearity	in	a	set	of	bioclimatic	variables	(Dormann	et	al.,	2000).	
Bioclimatic	variables	with	high	correlation	(Pearson's	correlation	coef-
ficients	r	>	0.70)	were	removed	to	reduce	multicollinearity	(Rogerson,	
2001).	The	VIF	values	of	the	resulting	predictor	variables	were	less	than	
5.	A	VIF	greater	 than	10	signals	a	collinearity	problem	 (Chatterjee	&	
Hadi,	2015).	The	remaining	seven	bioclimatic	variables,	namely	annual	
mean	temperature,	mean	diurnal	range	[mean	of	monthly	(max	temp-
min	temp)],	isothermality,	temperature	annual	range	(max	temperature	
of	warmest	month-min	temperature	of	coldest	month),	precipitation	in	
the	driest	month,	precipitation	in	the	warmest	quarter	and	precipita-
tion	in	the	coldest	quarter,	were	used	as	predictors	to	model	the	cur-
rent	distribution	of	the	selected	IAPs.

We	also	modelled	distributions	of	the	24	IAPs	for	future	climatic	
conditions.	We	 used	 projected	 bioclimatic	 variables	 for	 the	 period	
2050	for	RCP	6.0	from	the	Coupled	Model	Intercomparison	Project	
Phase	 5	 (CMIP5)	 as	 presented	 by	 the	 Intergovernmental	 Panel	 on	
Climate	 Change	 (Stocker	 et	 al.,	 2013)	 to	model	 future	 distribution.	
Several	groups	around	the	world	have	been	involved	in	climate	model	
experiments,	producing	different	global	climate	models	(GCMs)	which	
were	 submitted	 to	 the	 Couple	 Modelling	 Intercomparison	 Project	
(Taylor,	 Stouffer,	 &	Meehl,	 2012).	 The	 outputs	 of	 the	 GCMs	 for	 a	
range	of	time	periods	in	the	twenty-first	century	are	used	to	produce	
gridded	 bioclimatic	 variables	 for	 future	 climate	 scenarios	 (Kriticos	
et	 al.,	 2005).	GCMs	mathematically	 represent	physical	 processes	 in	
the	 atmosphere,	 ocean,	 cryosphere	 and	 land	 surface	 (McGuffie	 &	
Henderson-Sellers,	 2011).	Climate	models	 capture	 the	 fundamental	
processes	that	respond	to	climate	forcing	such	as	concentrations	of	
greenhouse	gases,	aerosols,	surface	albedo	changes	and	solar	irradi-
ance.	Therefore,	GCMs	are	used	to	understand	climate	and	forecast	
climate	change.	The	same	seven	bioclimatic	variables	used	for	model-
ling	current	distribution	were	used	to	predict	future	distribution	of	the	
IAPs.	We	downloaded	bioclimatic	data	of	12	global	circulation	models	
(GCMs):	BCC-CSM1-1,	CCSM4,	GFDL-ESM2G,	GISS-E2-R,	HadGEM2-
AO,	 HadGEM2-ES,	 IPSL-CM5A-LR,	 MIROC-ESM-CHEM,	 MIROC-
ESM,	MIROC5,	MRI-CGCM3	and	NorESM1-M	from	WorldClim	(Fick	
&	Hijmans,	2009).	The	details	of	the	GCMs	are	provided	in	Table	S1.	
Rather	than	relying	on	a	single	model,	we	created	an	ensemble	of	the	
twelve	GCMs	by	taking	average	values	and	used	the	ensemble	values	
as	predictors.	The	multimodel	 ensemble	 average	not	only	 accounts	
for	variability	among	different	GCMs,	but	also	yields	results	superior	
to	individual	models	at	global	and	regional	scales	(Aguirre-Gutiérrez,	
Treuren,	 Hoekstra,	 &	 Hintum,	 2017;	 Murphy	 et	 al.,	 2005;	 Pierce,	
Barnett,	Santer,	&	Gleckler,	2016).	At	a	high	greenhouse	gas	emission	
scenario,	RCP	6.0	represents	a	target	forcing	of	6.0	W/m2	above	the	
pre-industrial	baseline,	predicted	to	occur	by	the	end	of	the	century	
(Clarke	et	al.,	2007).	According	to	this	scenario,	the	projected	average	
temperature	will	rise	by	about	1.3	and	2.2°C	by	mid-	(2046–2065)	and	
late	21st	century	(2081–2100),	respectively.	The	average	temperature	
is	projected	to	stabilize	after	the	21st	century	by	the	employment	of	
a	 range	of	 technologies	and	strategies	 for	 reducing	greenhouse	gas	
emissions	(Collins	et	al.,	2013).

2.3 | Species distribution modelling

Species	distribution	modelling	is	an	approach	that	predicts	the	dis-
tribution	of	 a	 species	 across	 geographic	 space	 and	 time	using	 the	
correlation	 between	 the	 geographic	 occurrence	 or	 abundance	 of	
a	 species	 and	 corresponding	 environmental	 conditions	 (Elith	 &	
Leathwick,	2010).	This	approach	has	been	used	in	studies	of	bioge-
ography,	conservation	biology,	ecology,	palaeoecology	and	wildlife	
management	for	more	than	a	decade	(Araújo	&	Guisan,	2006)	and	
forecasts	 the	 range	 shifts	 of	 species	 under	 future	 climate	 change	
scenarios	 (Beaumont,	 Pitman,	 Poulsen,	 &	 Hughes,	 2007;	 Wiens,	
Stralberg,	 Jongsomjit,	 Howell,	 &	 Snyder,	 2009)	 including	 invasive	
species	(Bellard	et	al.,	2013).	Various	species	distribution	modelling	
tools	such	as	statistical	regression,	machine	learning	and	geographic	
extrapolation	are	in	current	use	to	model	species	distribution	(Elith	
et	 al.,	 1999).	 The	 performance	 of	 various	 algorithms	 available	 for	
species	 distribution	 modelling	 varies	 significantly	 (Elith,	 Kearney,	
&	 Phillips,	 2006).	 An	 ensemble	 modelling	 of	 species	 distributions	
involves	simulations	across	more	than	one	set	of	 initial	conditions,	
model	classes,	model	parameters	and	boundary	conditions	(Araújo	&	
New,	2007).	BIOMOD	(biomod2	package	in	r)	is	a	platform	for	ensem-
ble	forecasting	of	species	distributions	(Thuiller,	Lafourcade,	Engler,	
&	Araújo,	2009).	The	ensemble	model	accounts	for	the	uncertainties	
in	predictions	of	different	algorithms	and	uses	a	wide	range	of	ap-
proaches	to	test	models	(Aguirre-Gutiérrez	et	al.,	2017;	Thuiller	et	
al.,	2009).	We	used	ensemble	modelling	as	this	consensus	approach	
can	perform	better	than	a	single	modelling	algorithm	(Araújo	&	New,	
2007;	Thuiller	et	al.,	2009).	The	analysis	was	conducted	in	r environ-
ment	v	3.4.2	(R	Core	Team,	2016)	using	the	biomod2	package	(Thuiller	
et	al.,	2009).	The	selected	algorithms	used	to	produce	an	ensemble	
model	were	as	follows:	three	regression	methods	(GAM:	general	ad-
ditive	model;	 GLM:	 general	 linear	model;	 and	MARS:	multivariate	
adaptive	regression	splines),	three	machine	learning	methods	(ANN:	
artificial	neural	network;	GBM:	generalized	boosting	model;	and	RF:	
random	forest)	and	 two	classification	methods	 (CTA:	classification	
tree	analysis;	FDA:	flexible	discriminant	analysis).

As	 these	 models	 required	 background	 data	 (e.g.,	 pseudo-ab-
sence)	 and	 the	 actual	 absence	 data	 were	 unavailable,	 we	 used	
10,000	 pseudo-absences	 selected	 randomly	 outside	 a	 buffer	 of	
10	km	from	the	presence	points	by	following	Barbet-Massin,	Jiguet,	
Albert,	and	Thuiller	(2012).	The	models	were	calibrated	by	using	70%	
of	 the	occurrence	points	 (presence	 and	pseudo-absence)	 as	 train-
ing	data	and	evaluated	by	using	the	remaining	30%	as	testing	data	
(Araújo,	 Pearson,	 Thuiller,	&	 Erhard,	 2005).	We	 repeated	 the	 pro-
cess	of	pseudo-absence	generation	three	times	and	three	evaluation	
runs	per	species,	resulting	in	a	total	of	72	models	per	species	(eight	
models,	three	evaluation	runs	and	three	pseudo-absence	selection	
procedures)	under	each	climate	scenario.

We	used	two	evaluation	measures	of	model	validation	and	pre-
dictive	performance	namely	the	area	under	the	curve	(AUC)	of	re-
ceiver	operating	characteristics	and	true	skills	statistics	 (TSS).	The	
AUC	value	 represents	 the	 predictive	 power	 of	 a	model	 (Allouche,	
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Tsoar,	&	Kadmon,	2006)	although	study	suggested	additional	criteria	
(e.g.,	 report	of	sensitivity	and	specificity)	 to	assess	 the	model	per-
formance	(Lobo,	Jiménez-Valverde,	&	Real,	2013).	According	to	the	
AUC	value,	 the	model	was	graded	as	poor	 (if	AUC	=	0.6–0.7),	 fair	
(AUC	=	0.7–0.8),	good	(AUC	=	0.8–0.9)	or	excellent	(AUC	=	0.9–1.0)	
(Swets,	 1988).	 TSS	measure	 ranges	 from	 −1	 to	 +1	where	 +1	 indi-
cates	a	perfect	agreement,	and	a	TSS	value	below	0.4	indicates	poor	
model	discrimination	(Allouche	et	al.,	2006;	Beaumont	et	al.,	2016).	
From	 the	72	models	 per	 species,	we	built	 ensemble	models	 using	
a	weighted-mean	approach	in	which	weights	are	awarded	for	each	
model	proportionally	to	their	evaluation	metrics	scores;	hence,	the	
discrimination	 is	fair	 in	this	approach	(Marmion,	Parviainen,	Luoto,	
Heikkinen,	&	Thuiller,	2000).	Only	the	models	with	good	predictive	
accuracy	(TSS	>	0.6	and	AUC	>	0.8)	were	used	to	build	an	ensemble	
from	 the	 projection	 outputs	 (Bellard	 et	 al.,	 2013;	Gallien,	Douzet,	
Pratte,	Zimmermann,	&	Thuiller,	2010;	Thuiller	et	al.,	2009).	Binary	
maps	 (suitable	 and	 unsuitable)	 were	 produced	 using	 the	 optimal	
threshold	 that	maximizes	 the	 TSS	 score	 as	 a	 cut-off	 value,	 which	
then	 converted	 the	 projected	 occurrence	 probabilities	 during	 the	
cross-validation	 procedure	 (Allouche	 et	 al.,	 2006;	 Liu,	 White,	 &	
Newell,	 2016;	Marmion	et	 al.,	 2000).	 This	 threshold	 is	 unaffected	
by	 the	 prevalence	 of	 species	 occurrence	 and	 favours	 sensitivity	
(the	number	of	false	positives)	over	specificity	(the	number	of	false	
negatives),	which	is	considered	superior	for	modelling	invasive	spe-
cies	(Gallardo	&	Aldridge,	2009).	For	all	species,	we	built	a	minimum	
convex	hull	 (MCH)	around	current	 locations	of	a	 species	 to	deter-
mine	the	extent	of	their	occurrence	(IUCN,	2012;	Wright,	Hijmans,	
Schwartz,	&	Shaffer,	2015;	Figure	S1).	For	each	species,	we	measured	
the	size	of	their	range	as	represented	by	the	number	of	climatically	
suitable	pixels	within	the	convex	hull	for	the	designated	period	and	
calculated	changes	 in	the	range	sizes	among	two	different	periods	
(current	 and	2050).	This	 allowed	us	 to	exclude	 the	predicted	 suit-
able	areas	for	future	climate	outside	the	convex	hull	where	climatic	
conditions	might	not	be	analogous	to	present	conditions.	It	also	re-
duced	the	chances	of	overestimating	the	species	niche	(Capinha	&	
Pateiro-López,	2014).	We	also	computed	the	change	in	the	total	area	
of	predicted	niches	within	a	MCH	of	currently	occupied	locations	for	
each	species	under	current	and	future	climate	(number	of	pixels	suit-
able	under	future	climate—number	of	pixels	suitable	under	current)/
number	of	pixels	suitable	under	current).

2.4 | Invasion hotspot map

We	conducted	a	hotspot	analysis	(e.g.,	O'donnell,	2011)	to	identify	
the	 regions	 potentially	 suitable	 for	 the	maximum	 number	 of	 IAPs	
under	current	and	 future	climate.	We	aggregated	maps	of	 climati-
cally	suitable	niches	for	all	species	to	generate	species	diversity	(cells	
with	a	higher	value	indicating	high	species	diversity)	and	extent	maps	
(cells	occupied	by	at	least	a	single	species).	We	calculated	changes	in	
the	areas	of	both	diversity	and	extent	of	potentially	suitable	regions	
under	 current	 and	 future	 climate.	 The	 species	 diversity	 map	 was	
later	reclassified	using	the	combined	values	greater	than	or	equal	to	

the	25th	percentile.	The	regions	with	potentially	suitable	niches	for	
the	top	25th	percentile	of	the	combined	values	were	considered	as	
“invasion	hotspots”	 (Allen	&	Bradley,	2016;	O'donnell	et	al.,	2011).	
We	calculated	changes	 in	 the	areas	of	 so-called	 invasion	hotspots	
under	 current	 and	 future	 climate	 with	 respect	 to	 climatic	 zones,	
land	cover,	ecoregions,	physiographic	regions	and	federal	states.	We	
used	publicly	available	maps	of	ecoregions	(Olson	et	al.,	2012),	land	
cover	(Uddin	et	al.,	2015),	physiography	and	administrative	units.	A	
layer	of	climatic	zones	was	created	by	using	digital	elevation	model	
as	tropical	(<1,000	m	asl),	subtropical	(1,000–2,000	m	asl),	temper-
ate	(2,000–3,000	m	asl),	subalpine	(3,000–4,000	m	asl)	and	alpine	
(>4,000	m	asl)	following	Shrestha	(2008).

3  | RESULTS

The	model	performance	was	evaluated	by	the	scores	of	two	(AUC	
and	TSS)	performance	matrices	(Figure	S2).	The	average	AUC	val-
ues	of	the	24	studied	IAPs	ranged	from	0.74	(Leersia hexandra)	to	
0.93	 (Erigeron karvinskianus),	 indicating	 that	 the	models	have	 fair	
to	excellent	predictive	accuracy.	Likewise,	the	average	TSS	value	
ranged	 from	 0.50	 to	 0.83	 indicating	 good	 predictive	 accuracy.	
Moreover,	we	only	used	the	model	with	the	higher	predictive	ac-
curacy	(AUC	>	0.8	and	TSS	>	0.6)	to	build	an	ensemble	from	the	
projection	outputs.

Based	 on	 our	 species	 distribution	models,	 areas	 of	 potentially	
suitable	 niches	 for	 the	 studied	 IAPs	 vary	 widely	 (Table	 2;	 Figure	
S3).	 Out	 of	 the	 24	 species,	 15	 had	 potentially	 suitable	 areas	 that	
covered	 more	 than	 10%	 of	 Nepal's	 land	 area	 under	 current	 cli-
mate.	 Parthenium hysterophorus, Amaranthus spinosus, Senna tora, 
Ageratum houstonianum and Ageratum conyzoides	 had	a	potentially	
widespread	distribution,	whereas	Pistia stratiotes, Leersia hexandra, 
Erigeron karvinskianus, Oxalis latifolia and Alternanthera philoxeroides 
had	 a	 restricted	 distribution	 under	 the	 current	 climatic	 condition	
(Table	2).	The	predicted	suitable	niches	for	three	species	Pistia stra‐
tiotes, Leersia hexandra and Erigeron karvinskianus	under	the	current	
climate	covered	less	than	1%	of	the	land	area	of	the	country.

We	 observed	 both	 expansion	 and	 contraction	 of	 suitable	
niches	of	the	IAPs	from	current	to	future	climate	in	Nepal	(Table	2).	
Climatically	suitable	regions	for	75%	of	the	IAPs	would	increase	in	
contrast	 to	 the	decrease	 in	 the	 remaining	25%.	The	proportion	of	
change	 in	 suitable	 niches	was	 also	 greater	 for	 expanding	 than	 for	
contracting	 species.	 For	 example,	 a	maximum	 increase	 in	 suitable	
niche	was	by	923%	(Pistia stratiotes)	while	the	maximum	decrease	in	
suitable	niches	was	only	by	−36%	(Oxalis latifolia).	Therefore,	climate	
change	will	create	more	areas	suitable	for	the	IAPs	in	Nepal	in	the	
future.	However,	for	aquatic	species	as	Pistia stratiotes,	availability	of	
water	bodies	will	determine	the	actual	expansion	of	species.

Climate	change	will	increase	both	the	extent	and	the	intensity	(in-
vasion	hotspots)	of	the	climatically	suitable	regions	for	IAPs	in	Nepal	
(Figure	2).	Under	 the	current	climate,	around	59,700	km2	 (40%)	of	
the	country	were	predicted	as	suitable	for	IAPs,	while	33,600	km2 
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(23%)	were	 identified	as	 invasion	hotspots	 in	Nepal.	The	niche	ex-
tent	and	invasion	hotspots	will	expand	by	2%	and	5%,	respectively,	
suggesting	an	increase	in	the	potential	niche	of	IAPs	from	current	to	
future	climate.

Changes	 in	 the	 invasion	hotspots	were	evident	 in	different	cli-
matic	 zones,	 ecoregions,	 land	 covers,	 physiographic	 regions	 and	
federal	 states	 in	 Nepal	 (Figure	 3).	 The	 maximum	 increase	 in	 the	
area	of	invasion	hotspots	was	observed	in	the	tropical	zone,	which	
is	 situated	 below	 1,000	m	 (+2,747	 pixels,	 8%).	 Under	 the	 current	
climate,	 there	 were	 no	 invasion	 hotspots	 in	 the	 subalpine	 region	
(3,000–4,000	 m	 asl);	 however,	 the	 hotspots	 will	 expand	 towards	
temperate	 and	 subalpine	 regions	 in	 the	 future,	 indicating	 an	 ex-
pansion	towards	higher	elevation	regions	under	future	climate.	Out	
of	 the	 ten	ecoregions,	 eight	 coincided	with	 the	 invasion	hotspots.	
Terai-Duar	savanna	and	grasslands	had	the	highest	area	of	invasion	
hotspots	under	the	current	climate.	Both	expansion	and	contraction	
in	invasion	hotspots	were	observed	in	the	four	ecoregions	under	fu-
ture	 climate.	However,	 the	magnitude	of	 expansion	 is	 higher	 than	
contraction.	Himalayan	subtropical	broadleaf	forests	(+1,556	pixels,	
8%)	had	the	highest	increase	(+1,276	pixels,	7%)	in	climatically	suit-
able	 region	 followed	by	 the	Terai-Duar	 savanna	 and	grasslands.	A	
decrease	in	the	invasion	hotspots	was	noticed	in	the	Himalayan	sub-
tropical	pine	forests	(−477	pixels,	7%)	and	Eastern	Himalayan	broad-
leaf	forests	(−110	pixels,	5%).

A	higher	 level	of	overlap	was	 seen	between	 invasion	hotspots	
and	agricultural	lands	followed	by	forests	under	the	current	climate.	
The	 areas	 of	 invasion	 hotspots	 will	 increase	 in	 all	 land	 use	 types	
under	 the	 future	 climate,	 and	 the	 highest	 increase	 (+1,956	 pixels,	
10%)	was	predicted	in	forests	while	the	lowest	increase	(+33	pixels,	
6%)	 in	built-up	areas.	Physiographically,	under	 the	current	climate,	
Middle	Mountains	had	the	largest	area	of	invasion	hotspots	followed	
by	Terai.	A	maximum	proportion	of	surge	(+395	pixels,	41%)	in	the	
areas	of	invasion	hotspots	would	occur	in	the	High	Mountain	region,	
while	Middle	Mountains	would	lose	some	areas	(−970	pixels,	5%)	of	
the	invasion	hotspots	under	future	climate.	At	the	state	level,	State	
Five	has	the	highest	area	of	invasion	hotspots	while	State	Six	has	the	
lowest.	With	climate	change	projections,	the	highest	proportion	of	
increase	in	the	area	of	invasion	hotspots	was	found	in	State	Six	(+331	
pixels,	61%)	followed	by	State	One	(+751	pixels,	26%).

4  | DISCUSSION

To	our	knowledge,	this	study	of	modelling	the	distribution	of	24	IAPs	
presents	the	most	comprehensive	analysis	of	biological	invasions	in	
Nepal.	 To	 date,	most	 research	 either	 has	 focused	on	 a	 handful	 of	
species	(Shrestha,	Sharma,	et	al.,	2018)	or	has	been	limited	to	smaller	
geographic	area	of	Nepal	(Thapa	et	al.,	2018).	We	identified	the	geo-
graphic	 areas	 with	 different	 land	 cover,	 ecoregions,	 physiography	
and	climatic	zones	that	are	climatically	suitable	for	 invasions	using	
a	novel	approach	of	invasion	hotspots.	As	consistent	with	the	previ-
ous	studies	(Shrestha,	Sharma,	et	al.,	2018;	Thapa	et	al.,	2018),	our	
results	show	that	changing	climate	will	create	additional	climatically	

suitable	areas	 for	 IAPs	 in	Nepal	 in	 the	 future.	This	 study	provides	
baseline	information	for	decision-makers	for	cost-effective	manage-
ment	of	 IAPs	by	showing	the	areas	which	have	suitable	niches	for	
a	high	number	of	 IAPs.	Our	 results	will	be	helpful	 for	 the	preven-
tion	and	early	detection	of	IAPs	in	their	potentially	suitable	niches.	
Therefore,	our	research	has	important	implications	for	the	manage-
ment	and	monitoring	of	biological	invasions	in	Nepal	and	contributes	
to	 the	growing	global	body	of	 literature	on	 the	 impacts	of	climate	
change	on	biological	invasions.	Our	analysis	also	highlights	the	need	
of	integrating	biological	 invasions	into	Nepal's	climate	change	poli-
cies	and	generally	in	the	Himalayas.

The	 climatic	 condition	 of	 central	 Nepal,	 characterized	 by	 sub-
tropical	climate	that	is	under	cropping	and	forests,	has	the	maximum	
suitable	areas	 for	a	majority	of	 IAPs	under	current	climate.	As	the	
climate	changes,	a	new	suit	of	habitats	will	emerge	that	may	be	suit-
able	for	alien	species	(Hellmann	et	al.,	2008).	Climate	change	facil-
itates	dispersal,	 introduction	and	naturalization	of	alien	 species	as	
well	 as	 reduces	 the	 resilience	of	 local	 ecosystems	 to	alien	 species	
(Walther	et	al.,	2009).	Our	models	also	predict	that	additional	suit-
able	areas	for	IAPs	are	expected	to	emerge	in	the	higher	elevation	

TA B L E  2  Change	in	the	climatically	suitable	niches	(km2)	of	the	
invasive	alien	plant	species

Species Current Future % change

Ageratina adenophora 24,866 26,186 5.3

Ageratum conyzoides 26,664 25,611 −3.9

Ageratum houstonianum 26,776 30,406 13.6

Alternanthera philoxeroides 10,287 11,594 12.7

Amaranthus spinosus 28,337 18,913 −33.3

Argemone mexicana 13,807 10,924 −20.9

Bidens pilosa 23,409 20,931 −10.6

Chromolaena odorata 20,605 20,742 0.7

Eichhornia crassipes 12,160 10,400 −14.5

Erigeron karvinskianus 732 958 30.9

Galinsoga quadriradiata 14,234 14,245 0.1

Hyptis suaveolens 26,338 26,483 0.6

Ipomoea carnea 16,956 18,761 10.6

Lantana camara 19,606 27,231 38.9

Leersia hexandra 428 465 8.4

Mikania micrantha 12,447 12,779 2.7

Mimosa pudica 24,543 25,303 3.1

Oxalis latifolia 6,267 4,032 −35.7

Parthenium hysterophorus 30,915 34,437 11.4

Pistia stratiotes 198 2,024 922.8

Senna occidentalis 20,850 25,758 23.5

Senna tora 27,146 27,905 2.8

Spermacoce alata 16,883 18,185 7.7

Xanthium strumarium 18,413 19,824 7.7

Note: Areas	of	suitable	region	for	each	species	were	calculated	within	a	
minimum	convex	hull	of	its	currently	known	localities	within	Nepal.



1606  |     SHRESTHA And SHRESTHA

zones	of	both	the	eastern	and	western	regions	of	the	country.	At	the	
species	 level,	our	 results	have	broader	similarities	with	 the	 results	
of	Shrestha,	Sharma,	et	al.	 (2018)	who	found	a	consistent	 increase	
in	the	amount	of	climatically	suitable	regions	for	six	 IAPs	of	Nepal	
from	current	to	future	climate	despite	some	variations	 in	methods	
and	data.	However,	the	extent	of	suitable	regions	and	percentages	
of	 changes	 in	 suitable	 regions	 are	 different.	 They	 found	 that	 the	
areas	of	potential	niches	under	current	climate	for	Ageratum housto‐
nianum,	Hyptis suaveolens and Parthenium hysterophorus	are	slightly	
smaller	while	Chromolaena odorata,	Lantana camara and Mikania mi‐
crantha	are	greater	than	what	we	found.	Although	both	expansion	

and	reduction	of	suitable	niches	of	IAPs	were	observed	at	an	individ-
ual	species	level,	in	aggregation,	the	extent	and	intensity	of	invasion	
hotspots	are	expected	to	increase	in	Nepal	under	future	climate.

Globalization	and	climate	change	will	 likely	 increase	 the	 threat	
posed	 by	 invasive	 plants	 to	 high-elevation	 biodiversity,	 although	
high-elevation	mountain	 ecosystems	 are	 still	 less	 invaded	by	 IAPs	
as	 compared	 to	 lowland	 ecosystems	 (Pauchard	 et	 al.,	 2009).	 The	
invasion	hotspots	as	predicted	by	our	models	will	expand	towards	
the	 higher	 elevation	 areas,	 especially	 in	 the	 temperate	 and	 subal-
pine	 regions,	 making	 these	 regions	 susceptible	 to	 biological	 inva-
sions	under	future	climate.	The	expansion	on	invasion	hotspots	will	

F I G U R E  2  Extent	and	hotspot	of	predicted	suitable	niches	of	24	invasive	alien	plants	(IAPs)	and	their	richness	in	these	niches.	(a)	
Combined	extent	of	climatically	suitable	niches	under	current	climate	and	future	climate	(for	2050	under	RCP	6.0),	(b)	hotspot	of	suitable	
niches	under	current	and	future	climate,	(c)	richness	of	suitable	niches	of	IAPs	under	current	and	future	climate.	Inset	graph	shows	the	total	
number	of	pixels
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also	be	visible	in	the	tropical	region.	Some	field-based	studies	also	
showed	that	IAPs	are	currently	invading	higher	elevation	regions	as	
compared	to	the	past	(Shrestha,	Shabbir,	&	Adkins,	2015;	Tiwari	et	
al.,	2005).	At	high-elevation	 regions,	 the	 impact	of	 climate	change	

is	 likely	to	be	more	severe	than	in	low	elevation,	as	the	magnitude	
of	temperature	change	is	greater	in	those	areas	(Shrestha,	Gautam,	
&	Bawa,	2012).	Our	analysis	showed	that	the	maximum	increase	in	
the	area	of	climatically	suitable	niches	occurred	at	lower	elevations	

F I G U R E  3  Change	in	the	invasion	hotspots	for	24	invasive	alien	plants	of	Nepal	between	current	and	future	climate	(for	2050	under	RCP	
6.0).	(a)	Elevation	bands,	(b)	land	use	types,	(c)	ecoregions,	(d)	physiographic	regions	and	(e)	federal	states	(Nepal	has	been	recently	divided	
into	seven	federal	states	and	numbered	from	1	(east)	to	7	(west).	Official	names	of	the	states	have	yet	to	be	declared)
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(below	2,000	m)	while	the	proportion	of	change	 in	suitable	niches	
is	greater	at	higher	elevations	(above	2,000	m).	The	creation	of	cli-
matically	 suitable	 regions	 for	 IAPs	 in	 the	 high-elevation	 regions,	
which	are	already	vulnerable	to	climate	change	and	are	currently	ex-
periencing	its	impact,	will	have	severe	consequences	in	the	future.	
Therefore,	biological	invasions	will	add	pressure	and	increase	risks	to	
the	most	vulnerable	ecosystems	in	Nepal.

Along	with	 climate	 change,	 anthropogenic	 disturbance	 is	 con-
sidered	 a	 major	 driver	 that	 promotes	 plant	 invasion	 in	 mountain	
ecosystems	 (Davis,	 Grime,	 &	 Thompson,	 2014;	 Pauchard	 et	 al.,	
2016).	Nepal	has	undergone	a	significant	transformation	due	to	in-
frastructure	development,	 tourism	and	 trade	expansion	 (Lennartz,	
2018;	Nepal,	2000).	In	the	mountain	and	lowland	regions	of	Nepal,	
newly	built	roads	destabilize	slopes	and	trigger	landslides,	creating	
bare	ground	suitable	for	colonization	by	the	IAPs	(Lembrechts	et	al.,	
2012;	Lennartz,	2018).	Roads	play	an	 important	role	 in	the	spread	
of	 alien	 species	 by	 facilitating	 dispersal	 pathways	 and	 by	 provid-
ing	disturbed	 sites	 for	percolation	 from	 roadsides	 into	 the	natural	
adjacent	 vegetation	 (McDougall	 et	 al.,	 2018).	With	 tourism	 indus-
try	predicted	to	be	grown	in	the	future,	human	mobility,	trade	and	
transport	will	increase	significantly.	This	may	promote	the	dispersal	
of	 IAPs	 from	 lowlands	 to	high-elevation	 regions	and	 to	new	areas	
in	the	lowlands.	All	of	these	socio-economic	transformations	favour	
the	spread	of	IAPs,	and	climate	change	will	open	up	suitable	regions	
by	 reducing	 climatic	 barriers	 for	 them	 to	 invade	 higher	 elevation	
zones	(Hellmann	et	al.,	2008;	Pauchard	et	al.,	2009).	However,	the	
suitable	regions	identified	may	not	be	occupied	by	IAPs	due	to	nat-
ural	dispersal	barriers	in	mountains,	which	are	predominant	physical	
features	in	Nepal.	Therefore,	monitoring	and	management	of	IAPs	in	
Nepal	should	account	for	the	vulnerability	posed	by	climate	change	
combined	with	an	unprecedented	increase	in	anthropogenic	distur-
bances.	The	results	of	 this	study	might	be	useful	 for	 taking	a	pre-
cautionary	 approach	 and	 encourage	 vigilance	 in	 these	 climatically	
suitable	areas.

Currently,	 the	maximum	amount	of	suitable	 regions	 for	 IAPs	 is	
located	 in	 agricultural	 areas	and	areas	with	 forest	 cover.	The	high	
suitability	of	agriculture	and	forest	lands	for	IAPs	will	be	a	threat	to	
the	economy	and	local	livelihoods.	A	global	study	roughly	estimated	
that	the	total	cost	of	IAPs	to	Nepal's	agriculture	was	approximately	
US$	1.4	billion	per	year	(Paini	et	al.,	2016).	Local	communities,	who	
primarily	 rely	 on	 farming	 and	 forests	 for	 their	 livelihood	 and	 em-
ployment,	have	already	been	negatively	 impacted	by	IAPs,	such	as	
through	 increased	 labour	 input	 in	weeding,	 reduced	 crop	 produc-
tion,	livestock	poisoning,	reduced	supply	of	forage	and	negative	im-
pacts	on	forests	(Shrestha,	Shrestha	et	al.,	2018).	Future	climate	will	
increase	the	distribution	of	the	IAPs	that	were	ranked	by	local	com-
munities	as	the	worst,	such	as	Ageratum houstonianum,	Chromolaena 
odorata,	 Ageratina adenophora and Mikania micrantha	 (Shrestha,	
Shrestha	et	al.,	2018).	Furthermore,	 the	distribution	of	Parthenium 
hysterophorus and Lantana camera,	which	are	 considered	 the	most	
troublesome	weeds	 in	 the	 region	 (Thapa	et	al.,	2018),	will	 also	 in-
crease	in	the	future.	Therefore,	the	economic	loss	and	negative	im-
pacts	caused	by	IAPs	on	food	security,	 livelihood,	biodiversity	and	

ecosystem	services	 in	 the	 future	may	be	 augmented	 if	 preventive	
and	control	measures	are	not	immediately	taken	seriously.

The	models	developed	from	the	current	distribution	are	extrapo-
lated	in	time	and	space	to	forecast	potential	IAP	invasions	under	fu-
ture	climate	and	may	not	capture	the	issue	of	non-analogous	climatic	
space	(Fitzpatrick	&	Hargrove,	2007).	Shifts	in	species	range	involve	
multiple	ecological	processes	such	as	dispersal,	demography,	phys-
iology,	 species	 interactions,	 population	 interactions	 and	 evolution	
operating	at	multiple	 scales	 (Urban	et	al.,	2016).	Furthermore,	 the	
correlation	 structure	 of	 future	 climatic	 conditions	 could	 be	differ-
ent	from	current	conditions,	thereby	leading	to	errors	in	predictions.	
Therefore,	 SDMs	 do	 not	 explicitly	 consider	 these	 uncertainties	
caused	 by	 non-analogous	 climate	 space	 and	 ecological	 processes	
that	affect	the	species	(Elith	&	Leathwick,	2010).	Limiting	the	areas	
within	 the	current	extent	of	occurrence	 (e.g.,	 a	MCH)	 in	analysing	
the	change	 in	climatically	suitable	niches	under	current	and	future	
climate	 prevents	 severe	 changes	 in	 the	 total	 amount	 of	 suitable	
area	 (Wright	 et	 al.,	 2015).	 Furthermore,	 there	 are	 other	 potential	
issues	 such	 as	modelling	 algorithm	 (Elith	 et	 al.,	 1999),	 the	 choices	
of	 environmental	 variables	 used	 (Synes	&	Osborne,	 2011),	 for	 fu-
ture	climate,	GCMs	used	(Steen,	Sofaer,	Skagen,	Ray,	&	Noon,	2017),	
collinearity	(Dormann	et	al.,	2000),	model	complexity	(Wright	et	al.,	
2015),	model	evaluation	method	 (Lobo	et	al.,	2013)	 and	 threshold	
values	to	produce	binary	maps	(Liu	et	al.,	2016)	that	can	 influence	
model	outcomes.	In	addition,	future	land	use	change	scenarios	can	
also	alter	future	species	distributions	(Martin,	Dyck,	Dendoncker,	&	
Titeux,	2017).	There	is	no	agreement	on	optimal	ecological	model-
ling	strategy,	and	such	a	strategy	 is	unlikely	 to	emerge	due	 to	 the	
context-specific	nature	of	 the	modelling	process	 (Heikkinen	et	 al.,	
1982;	Wright	et	al.,	2015).	Despite	the	uncertainties,	it	was	argued	
that	 some	 amount	 of	model	 extrapolation	 for	 ecological	manage-
ment	in	a	changing	climate	is	essential	for	practice	(Mahony,	Cannon,	
Wang,	&	Aitken,	2008).	Improvements	of	models	are	a	crucial	issue	
for	enhancing	the	predictive	accuracy	of	the	models.

Despite	global	and	local	efforts	to	manage	biological	invasions,	
the	 number	 of	 alien	 species	 has	 been	 ever	 increasing	 across	 all	
taxonomic	groups	and	geographic	 regions	of	 the	world	 (Seebens	
et	 al.,	 2017).	 Climate	 change	 has	 a	 potential	 to	 create	more	 fa-
vourable	regions	in	the	future	for	IAPs	as	shown	by	this	research	
and	other	studies	(O'donnell	et	al.,	2011;	Shrestha,	Sharma	et	al.,	
2018).	 By	 creating	 climatically	 suitable	 regions	 in	 the	most	 vul-
nerable	natural	 and	agro-ecosystems	 that	provide	essential	eco-
system	 services,	 climate	 change	 is	 likely	 to	 amplify	 the	 impacts	
on	 ecosystems	 and	 economy	 in	 the	 future	 by	 two	 major	 ways.	
First,	 climate	 change	 negatively	 affects	 ecosystems	 and	 native	
species	by	changing	their	distribution,	composition	and	phenology	
(Walther	 et	 al.,	 2002)	 and	hence	 reduces	 their	 resilience	 to	bio-
logical	invasions.	Second,	climate	change	facilitates	the	encroach-
ment	 of	 invasive	 species	 by	 removing	 current	 climatic	 barriers	
(Hellmann	et	al.,	2008).	Cold	temperatures	limit	invasion	by	many	
alien	species	in	high-elevation	regions	(Alexander	et	al.,	2011),	but	
climate	change	will	elevate	this	barrier	to	a	higher	elevation.	The	
increase	in	biological	invasions	will	have	a	serious	consequence	on	
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the	country's	economy	and	 local	 livelihoods.	Given	 that	 little	at-
tention	is	paid	to	biological	invasions	in	biodiversity	conservation	
and	climate	adaptation	policies	in	Nepal,	where	the	formulation	of	
a	national	strategy	for	the	management	of	invasive	species	is	still	
underway,	the	result	of	this	study	as	a	precautionary	note	might	
be	helpful	to	formulate	such	policies.	With	this	result,	we	urge	that	
early	detection	and	preventive	actions	should	focus	on	the	moun-
tainous	areas	of	the	country.	Apart	from	distribution	modelling,	a	
better	understanding	of	species	traits,	dispersal	pathways	and	the	
mechanism	of	the	natural	filters	that	prevent	colonization	of	inva-
sive	 species,	 as	well	 as	 the	 community	 perceptions	 and	 involve-
ment	 in	management,	 are	necessary.	Our	 results	 show	a	diverse	
response	 of	 IAPs	 to	 climate	 change;	 therefore,	 species-specific	
prioritization	exercises	may	be	helpful	to	better	manage	and	mon-
itor	specific	IAPs.
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