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ABSTRACT 
The Space Shuttle Columbia’s catastrophic failure has been attributed to a piece of external fuel 

tank insulating SOFI (Spray On Foam Insulation) foam striking the leading edge of the left wing 

of the orbiter causing significant damage to some of the protecting heat tiles. The accident 

emphasizes the growing need to develop effective, robust and life-cycle oriented methods of 

nondestructive testing and evaluation (NDT&E) of complex conductor-backed insulating foam 

and protective acreage heat tiles used in the space shuttle fleet and in future multi-launch space 

vehicles. The insulating SOFI foam is constructed from closed-cell foam. In the microwave 

regime this foam is in the family of low permittivity and low loss dielectric materials. Near-field 

microwave and millimeter wave NDT methods were one of the techniques chosen for this 

purpose. To this end several flat and thick SOFI foam panels, two structurally complex panels 

similar to the external fuel tank and a “blind” panel were used in this investigation. Several 

anomalies such as voids and disbonds were embedded in these panels at various locations. The 

location and properties of the embedded anomalies in the “blind” panel were not disclosed to the 

investigating team prior to the investigation. Three frequency bands were used in this 

investigation covering a frequency range of 8-75 GHz. Moreover, the influence of signal 

polarization was also investigated. Overall the results of this investigation were very promising 

for detecting the presence of anomalies in different panels covered with relatively thick 

insulating SOFI foam. Different types of anomalies were detected in foam up to 9” thick. Many 

of the anomalies in the more complex panels were also detected. When investigating the blind 

panel no false positives were detected. Anomalies in between and underneath bolt heads were 
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not easily detected. This paper presents the results of this investigation along with a discussion 

of the capabilities of the method used. 
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INTRODUCTION 
The Space Shuttle Columbia’s catastrophic failure has been attributed to a piece of external fuel 

tank insulating SOFI (Spray On Foam Insulation) foam striking the leading edge of the left wing 

of the orbiter causing significant damage to some of the protecting heat tiles. According to the 

Columbia Accident Investigation Board (CAB) report, the flyaway foam from the fuel tank was 
“the mcst prcSzS!e czuse” of the wing damage that hmught dnwn the space shuttle Columbia 111. 

The accident emphasizes the growing need to develop effective, robust and life-cycle oriented 

methods of nondestructive testing and evaluation (NDT&E) of complex conductor-backed 

insulating foam and protective acreage heat tiles used in the space shuttle fleet and in future 

multi-launch space vehicles. 

The insulating SOFI foam is constructed from closed-cell foam. In the microwave regime this 

foam is in the family of low permittivity and low loss dielectric materials. When applied to the 

external fuel tank the thickness of the foam can vary significantly from a few millimeters to tens 

of centimeters. The potential anomalies that may be present in the foam (e.g., air pockets, 

delamination and disbond) have very similar dielectric properties to the foam itself. Therefore, 

the dielectric contrast between the foam and a potential anomaly is very small. In addition, the 

structural geometry of the external fuel tank is very complex near the bipod and in the stringer 

regions. The combination of these restrictive factors significantly limits the utilization of many 

standad NDT methods for effective and robust inspection r?f the inner stnictura! characteristics 

of the Space Shuttle’s external tank insulating SOFI foam. 

Subsequent to the Space Shuttle Columbia’s catastrophic failure, NASA Marshall Space Flight 

Center embarked upon a program of evaluating all NDT methods suitable for inspecting the 

SOFI foam. Near-field microwave and millimeter wave NDT methods were one of the 

techniques chosen for this purpose [2-41. 

Near-field microwave NDT&E methods have shown great promise for inspecting thick and multi 

layered (sandwich) dielectric composites for detecting anomalies such as void, disbond, 

delamination, impact damage, porosity variation, etc. [5-151. One of the more attractive 

attributes of these methods is the fact that microwave and millimeter wave signals can easily 
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penetrate inside dielectric composites and interact with their inner structure. This is particularly 

relevant when inspecting low loss dielectric materials such as the SOFI insulating foam. In 

addition, microwave and millimeter wave systems designed and constructed for this purpose are 

small, low-powered (< 10 mW), handheld, portable, adaptable to commercial 2D scanners, fast, 

operator friendly (i.e., no microwave engineering skill requirements), low-cost and provide real- 

time datdimage. 

This paper presents the results of the microwave and millimeter wave NDT of the SOFI foam, 

and the results of a subsequent blind test on a relatively small panel similar in geometry and 

foam structure to a section of the external fuel tank. This panel was embedded with anomalies 

(e.g., voids and disbonds) of different sizes, shapes and locations unknown to the investigating 

team. 

SAMPLE PREPARATION 
An extensive set of measurements was performed on several SOFI foam panels similar in 

structure and properties to that used in the shuttle external fuel tank. The initial panels were 

constructed of flat and thick (up to 9” thick) SOFI foam backed by aluminum plates. Embedded 

in these panels were various inclusions such as small metallic and rubber washers. These initial 

panels were used to assess the basic capability of these microwave techniques for inspecting 

thick insulating SOm foam. As the investigation progressed, panels with increasing geometrical 

complexity were investigated. During the latter part of the investigation more realistic panels, 

representing the structure of the Shuttle external fuel tank, were investigated. The embedded 

anomalies were designed to closely represent those that may be encountered in the external tank 

insulating SOFI foam. These anomalies included voids and disbonds of different sizes, and they 

were placed at different locations within a panel. A void was produced by hollowing out a 

cubical piece of foam prior to placing it in the desired location and spraying foam on it prior to 

completing the panel construction. A disbond was produced by cutting a thin squared shaped 

foam and adhering it to the foam by using a thin layer of adhesive prior to spaying it prior to 

completing the panel construction. 

4 



, 

MEASUERMENT APPROACH 
The panels were placed on a computer-controlled 2D scanning table and a microwave probe was 

held at a certain standoff distance above the panels [ 5 ] .  Several laboratory-designed microwave 

reflectometers were used for inspecting these panels. The reflectometers either incorporated 

open-ended rectangular waveguide probes or small horn antennas. The horns provided for a 

certain degree of signal focusing resulting in increased spatial resolution. In this approach, an 

incident microwave signal, at a specific frequency, irradiates the panels. The incident signal is 

then partially reflected by the panel, and is subsequently picked up by the probe. The ratio of the 

reflected to the incident signal referenced at the probe aperture gives the effective reflection 

coefficient of the panel. This is a complex parameter whose phase and magnitude can be used to 

detect and evaluate the presence of an anomaly. The reflectometer output used here is then a 

voltage proportional to the phase andor magnitude of the reflection coefficient. Subsequently, 

as the probe scans the panel, the probe output voltage is used to produce a raster scan or a 2D 

image of the panel. The measured voltages in this measured matrix are then normalized and 

assigned different grayscale levels producing a grayscale image, respectively. In this way, the 

grayscale levels in one image do not necessarily correspond to the same output voltage levels 

(e.g., colors) in another image. Therefore, in some cases when two images are to be compared, 

their matrices are first augmented, and subsequently the new matrix is normalized and a new 

image is produced. In this way the voltages associated with different regions of the original two 

images can be directly compared. 

Anomalies such as air voids and disbonds are not expected to strongly scatter or reflect the 

incident microwave signal. Consequently, when a signal interacts with an anomaly and the 

reflected signal is picked up by the microwave probe, the signal phase variations due to the 

presence of the anomaly may be a stronger indication of the presence of the anomaly than the 

signal magnitude variations. Therefore, throughout this investigation, phase sensitive microwave 

reflectometer systems were utilized [5 ] .  Four microwave frequency bands were considered and 

utilized in this investigation; namely, individual frequencies in X-band (8.2-12.4 GHz), K-band 

(18-26.5 GHz), Ka-band (26.5-40 GHz) and V-band (50-75 GHz). 
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RESULTS 
As mentioned earlier, several initial flat panels were used to determine the basic effectiveness of 

these microwave measurements for inspecting thick insulation foam structures. The foam 

thickness in these panels varied from 6” to 9” and metallic and rubber washers were embedded 

inside the foam approximately 2” above the aluminum plate backing. Figure l a  shows the 

picture of a 9”-thick panel, while Figure lb  shows the X-band image of the embedded washer 

(dimensions are in mm). The image clearly shows the washer and provides a close estimate of 

its relative size (considering the distance between the probe and the washer). 

Another 4”-thick flat panel was produced having a thin cork (-3/8” thick) substratebase applied 

to the aluminum backing and several disbonds and air voids were embedded on and underneath 

the cork substrate. All anomalies were detected at K-band and Ka-band. Originally when a 

disbond was detected in this panel, an interesting “clover-like” pattern was detected in its image. 

Upon further discussions with those who produced this panel it became evident that the disbond 

was created by using a thin squared-shaped foam which was secured to the cork substrate using 

small daps of adhesive at each of its corners. The microwave image of this manufactured 

disbond at K-band is shown in Figure 2, which clearly shows the disbond and the “clover-like” 

pattern due to the individual daps of adhesive. The result was significant as it showed the 

relatively high spatial resolution that may be obtained using these microwave methods. It also 

indicated the presence of a thin air gap between the cork and the foam section, which is a “real” 

disbond (the region in the center of the “clover-like” pattern). Another interesting feature was 

also encountered when inspecting this panel. The microwave images of a set of four voids 

indicated them to be located at a different place and relative configuration than the schematic of 

the panel indicated. Once more, upon further discussions it became evident that the actual 

placing of the voids was not according to the original schematic, but was according to what was 

indicated by the microwave image. 

A 2” inch-thick panel was investigated, at Ka-band and V-band, in which 40 embedded air voids 

existed. The schematic of the panel is shown in Figure 3a. The limited scan area associated with 

the scanning table could not accommodate scanning the entire panel at once. Consequently, 

several sections of this panel were individually scanned first, and then the resulting images were 
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augmented to produce an image corresponding to the entire panel. Figure 3b shows an image of 

this panel obtained at V-band. From this image, one can see that air voids as small as 0.25” in 

diameter were relatively easily detected throughout the panel thickness. Potentially, an 

additional indication such as an unintended rollover void, which was most likely produced 

during the manufacturing of the panel, was also detected as shown in the image. The outcome of 
r 8  * inis experirnerii aiid the ~ ~ i i k i i ~ g  i i i i ~ g ~  ~ ~ i ; f i i ? - i l ~  thc p~tcfitiii’l of these E~CZYKX.:~ ZXXSZ~PZXE~ 

for producing significant detail about the relative size and location of an anomaly in the SOFI 

foam. The different intensity levels associated with the air voids of similar size gives indication 

of the relative depth of the voids. In addition, this image revealed some features that are 

associated with the spraying process (the curved patches in the bottom right side of the image). 

The panels investigated thus far did not include any complicated structural features in their 

conductor backing, and their foam thicknesses were relatively constant. The next experiment 

involved a panel containing similar structural features and complexity to that of the external fuel 

tank. Figure 4 shows a 3’ by 3’ panel, prior to spraying it with SOFI foam on it, showing various 

structural components such as four open-top stringers bolted to the metal backing, four bolts 

joining two vertical metal flanges producing a ridge of about 1” in width, and a relatively large 

flat area (i.e., approximately the top half of the panel). The approximate locations of various 

embedded air voids and disbonds are also shown in Figure 4. This panel was then spayed with 

SGFI foam in the same manner and geometry as the real respective section of the extcrnal fuel 

tank. Many of the embedded anomalies were detected and their microwave images were 

produced, with several of these examples discussed here. Figure 5 shows the image of the 314‘’ 

comer void (to the left of the left most bolt) at K-band. The image clearly shows the void and its 

boundaries in the presence of the bolt. This image was minimally processed to remove the 

influence of changing SOH foam thickness in this region. Figure 6a shows the 2” disbond in 

between the second and the third stringers, at K-band. The presence of the row of bolt heads on 

both sides of this anomaly is also shown in this image. To better demonstrate this, Figure 6b 

shows the image of a section of a stringer (devoid of anomalies) showing the rows of bolts on 

either sides of it. 
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Subsequent to demonstrating the capability of these microwave methods for detecting and 

evaluating anomalies in various locations within simple and thick SOFI foam panels and more 

typical and structurally complicated panels, a blind test was conducted. This test involved 

inspecting a section of a panel, similar in geometry to that shown in Figure 4, possessing three 

stringers. Additionally, several anomalies had been embedded in this panel. The locations of 
AI- - - - - ._ -I_ - --.--- --& ------1 +A +Lo ; m x r - o t ~ n a t ~ n n  trio- /a n 9 hlinrl yep!). The y-p.taj LIlesc allullldieS wclc I I U L  1 G V b a l h  L U  C 1 1 U  lllVb,UC16UC1116 C U U l l i  \v.&., u V.II.U 

backing also included several equally spaced drilled holes around its edges. These holes are 

strong scatterers, however they are not anomalies for the purpose of this investigation. Figure 7 

shows a picture of this panel with the stringers numbered as shown. 

This panel was scanned (section by section) at K-band, Ka-band and some portions at V-band at 

two orthogonal polarizations. The images obtained from these sections where then patched 

together to produce an image of the entire panel. Figures 8a and 8b show the patched images of 

the panel at K-band using parallel and orthogonal polarizations, respectively. Parallel 

polarization refers to the case where the incident electric field vector is parallel to the long axes 

of the stringers, while orthogonal polarization refers to when the incident electric field vector is 

orthogonal to the axes of the stringers. These images show much detail about the internal 

structure of the panel as well as showing several of the “potential” embedded anomalies. 

Potential refers to the fact that these detected indications were to be later verified using 

destructive testing. Subsequently, the foam was destrcictively inspected far the presence of these 

“potential” anomalies. 

It must be noted that structural features, whose primary axes are parallel to the incident wave 

polarization vector, are expected to be more clearly detected. This fact is evident in Figure 8a 

when considering the image from the stringers and the bolt heads. Both of these features have 

axes parallel to the incident electric field polarization vector and hence are clearly detected. The 

rings around the bolt heads are due to edge scattering form the bolts. 

Both images clearly show the presence of the through holes around the bottom edge of the panel. 

The panel also possessed a natural and visible disbond at the bottom of the ramp adjacent to 

stringer #3. Figures 8a and 8b clearly show the presence of this disbond (when compared to the 
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same region near stringer #l). Figure 8a also shows three distinct indications of potential voids 

(labeled A-C). It is important to note that two of these potential voids are near strong scattering 

objects, namely a through hole and a bolt head, respectively. Nevertheless, their presence is 

clearly indicated in this image. To better illustrate the presence of potential void A, Figure 9 

shows the region immediately surrounding this anomaly using parallel polarization. One can 

clearly 1 1  see tiie iri&caiiuij sawiapd -fiith the prcscfi22 of :his i;otcntia! .“,&I. 

Stringer #3 opening region is clearly different than the same region for the other two stringers. 

Initially it was determined that there must be a void in the opening region of stringer #3. This 

decision was partially due to the fact that the other two stringer opening regions produced very 

similar images. To increase the level of confidence in associating a potential embedded void in 

this region, the image of the three stringer opening were also produced at Ka-band. Figures 10 

shows the augmented images of these three regions, indicating a clear difference in the image 

obtained from stringer #3 opening region than the other two stringers. Consequently, the 

investigating team decided that stringer #3 opening region must have a potential void in it. It is 

very important to note that there are many stringers around the real external fuel tank. 

Consequently, images from many of these areas which can be compared and a decision about the 

presence of potential voids can be made with much higher levels of confidence and certainty on 

the real external tank. In this investigation we only had three such areas available and the 

decision to indicate a potential void in stringer #3 opening region was made based on the 

obtained images from these limited number of stringers. 

Subsequently, the foam was destructively inspected for the presence of the potential anomalies. 

The “potential” voids (A-C) were verified to exist and be located where the microwave images 

indicated them to be. However, something interesting was discovered when inspecting the 

stringer opening regions. It turns out that two similar voids were embedded in the opening 

regions of stringers #1 and #2. All images from these two regions show extreme similarity 

corroborating the fact that these regions were indeed similar. However, an unintentional void 

was discovered in the stringer #3 opening region. All images produced from this region showed 

significant difference between it and the same regions in stringers #1 and #2. This finding is 

9 



very significant and clearly shows the potential applicability of this inspection method for 

evaluating the state of the external fuel tank SOFI foam. 

DISCUSSION 

Overall the results of this investigation were very promising for detecting the presence of 

anomaiies in different paneis coveied with rdatively thick iiisiikitiiig SOFI f~am. Different t;yes 

of anomalies were detected in foam up to 9” thick using microwave sources transmitting less 

than 10 mW of power. From the images obtained in this investigation, the capability of these 

microwave and millimeter wave methods for producing relatively high-resolution images of 

anomalies and the inner structure of the panels is clearly evident. When conducting these 

measurements it is very easy to manipulate the frequency of operation as shown in this paper, for 

obtaining more details about the inner structural characteristics of the tank. This is an important 

issue from a practical point of view since several systems operating at several frequency bands 

may be used to not only corroborate the inspection results at one band, but also to produce 

additional information about an anomaly (e.g., its size, depth within the foam, etc.). 

Furthermore, using two orthogonal signal polarizations a set of images can be produced that 

when studied together can provide more information than when a single polarization is used. 

Orthogonal polarization measurements can be easily accomplished by simply adjusting the 

relative orientation of the broad dimension of the open-ended waveguide probe or the horn 

antenna. More importantly, the images produced using these methods are self-explanatory aiid 

an operator can deduce much valuable information from the raw images. This feature makes 

these systems suitable for spot checking of critical region of the Space Shuttle. 

Another significant issue is that no false positive indications were produced even in areas with 

complex geometry (e.g., stringers). Furthermore, an unintentionally manufactured void in the 

“blind” panel was detected. It is also important to note that due to the structural periodicity 

associated with the external tank, comparison of images obtained from similar areas can yield 

quick and useful information about the presence of a potential anomaly. This is important since 

it reduces the decision making time by an operator and provides for a degree of repeatability, 

redundancy and increased measurement robustness. 
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Anomalies under bolts and in between bolt heads were not satisfactorily detected. This is 

primarily due to the fact a metallic bolt masks any anomaly underneath in the former case, and 

strong scattering from bolt heads tends to mask indication of an anomaly in the latter case, 

respectively. In addition, primarily due to limitations in the scanning process, disbonds placed at 

the slanted sides of stringers were not detected either. 

The majority of the images shown here were raw images to which no signal processing was 

applied. In some cases a row or a column of an image was subtracted from the rest of the image 

to reduce the influence of standoff distance or foam surface profile variations (i.e., slanted foam 

surface). There are many simple, fast and commercially available signal processing algorithms 

that can be incorporated into these microwave and millimeter wave NDT&E measurements to 

further improve the quality of the images. These algorithms may render enhanced images for 

obtaining information about the presence and properties of a potential anomaly. 

The systems used here can be employed at various external tank construction stages such as 

when spraying the foam, after the foam has been sprayed and when all components have been 

attached. The ability to provide for this comprehensive life-cycle inspection is an important 

feature of these measurement methods and systems. The methodology outlined and used in this 

investigation can also be directly applied to other areas of the Space Shuttle that require 

comprehensive and periodic inspection such as the orbiter’s acreage heat tiles for detecting 

impact damage and disbonds. The incorporation of higher resolution probes is expected to aid in 

detecting anomalies in highly scattering areas. Alternatively a lens-corrected horn antenna which 

provides narrow spot beams may also be used to inspect such areas [13]. If necessary, the depth 

of an anomaly can be evaluated using a calibration approach based on conducting a thorough 

electromagnetic simulation [6] ,  or using a custom-made band-limited time-domain measurement 

setup. 

The scanning systems used for most of this investigation were limited to scanning relatively 

small areas of the panels. Consequently, augmented or patched images, resulting in a larger 

image of the panels, were not always easy to interpret. For example, comparing this method to 

others, that were investigated for potential use on the space shuttle external tank, those with 
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larger scanning areas (i.e., 100 cm by 100 cm compared to 20 cm by 20 cm (used in this 

investigation) always produced easier to interpret images [3]. Since this is not a limitation of the 

inspection systems used in this investigation, it is expected that when they are incorporated into 

scanning systems capable of scanning larger areas easier to interpret images will result. 

Fiiizlly, these iiieasiiremziit systems izc rzlativzly siiiall, rigged, rGb.;s: aiid rza&!y pi-kble. 

Further, these systems can be designed to be housed in operator-friendly packages suitable for 

handheld as well as automated measurements including those in space. 

Acknowledgement: This work was supported by a grant from NASA George C. Marshall Space 

Flight Center, Huntsville, AL. 
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List of Figures 

a) Picture of a 9”-thick flat insulating SOFI foam panel, and b) image of an embedded 

washer at X-band (dimensions in mm). 

Image of a disbond in a flat foam panel with a cork substrate applied to the aluminum 

backing at IC-band. 

a) Schematic of the panel with 40 voids, and b) augmented image of the panel at V- 

band. 

Picture of a 3’ by 3’ panel prior to the application of SOFI foam layer showing the 

location of several embedded anomalies. 

Image of the 314” comer void in presence of a bolt. 

a) Image of a 2’’ squared disbond in between the stringer regions, and b) image of the 

region between two stringers with no anomaly showing the row of bolt heads. 

Picture of the 2’ by 2’ “blind” panel. 

a) Patched image of the entire “blind” panel at K-band at horizontal polarization, and 

b) at vertical polarization. 

Localized image of Void (A) in the presence of two through holes. 

Figure 10: Augmented images of the three stringer openings. 
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