
 
 
 
 

 

Shrestha, A., Le Kernec, J. , Fioranelli, F. , Marshall, J.F. and Voute, L. 

(2018) Gait Analysis of Horses for Lameness Detection with Radar 

Sensors. In: RADAR 2017: International Conference on Radar Systems, 

Belfast, UK, 23-26 Oct 2017, ISBN 9781785616730 

(doi:10.1049/cp.2017.0427) 

 

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 

 

 
 
http://eprints.gla.ac.uk/140848/ 
     

 
 
 
 
 

 
Deposited on: 14 June 2018 

 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://dx.doi.org/10.1049/cp.2017.0427
http://eprints.gla.ac.uk/163783/
http://eprints.gla.ac.uk/163783/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


1 

Gait analysis of horses for lameness detection with radar sensors 

A. Shrestha*, J Le Kernec*, F Fioranelli*, J F Marshall †, L Voute † 

*School of Engineering, University of Glasgow, UK a.shrestha.1@research.gla.ac.uk, julien.lekernec@glasgow.ac.uk, 

francesco.fioranelli@glasgow.ac.uk 
†Weipers Centre Equine Hospital, University of glasgow, UK, john.f.marshall@glasgow.ac.uk, lance.voute@glasgow.ac.uk 

 

 

Keywords: FMCW radar, micro-Doppler signatures, feature 

extraction, classification, machine learning. 

Abstract 

This paper presents the preliminary investigation of the use of 

radar signatures to detect and assess lameness of horses and its 

severity. Radar sensors in this context can provide attractive 

contactless sensing capabilities, as a complementary or 

alternative technology to the current techniques for lameness 

assessment using video-graphics and inertial sensors attached 

to the horses’ body. The paper presents several examples of 

experimental data collected at the Weipers Centre Equine 

Hospital at the University of Glasgow, showing the micro-

Doppler signatures of horses and initial results of their analysis. 

1 Introduction 

In 2016 the most frequent disease syndrome recorded for 

horses in the UK was lameness, which accounted for 33% of 

all reported issues according to the National Equine Health 

Survey (NEHS) [1]. This report appeared to link the majority 

of lameness cases to problems in the limbs (proximal limb 

degenerative disease), and in general lameness has a very 

severe impact on horses’ welfare through pain and suffering, 

often leading to loss of use and euthanasia.  

To address this problem, different methods to detect and assess 

lameness have been developed by veterinary clinicians, an 

important feature of which must be the repeatability and 

objectivity of the assessment. In [2], a case study on the 

repeatability of subjective, empirical evaluation of lameness 

between 2-5 veterinary clinicians with 18-years experience 

was carried out. Depending on the severity of lameness and the 

standard test used, agreement varied from 51.6% to 93%, 

where the lowest score was linked to mild lameness.  

This shows the importance of developing objective methods 

for lameness detection and proper diagnosis and treatment. 

Gait evaluation techniques [3] for kinematic analysis include 

video-graphic combined with commercial software (e.g. 

Centaur Biomechanics [4]) or optoelectronics systems (e.g. 

Qualisys [5]), as well as a variety of sensors such as electro-

goniometers, force plates or shoes, strain gauges, 

accelerometers. A review of commercial existing technology is 

available in [6]. 

Video-graphic analysis can provide good results and its 

performance has been improving in the past few years in terms 

of higher frame rates and higher image resolution. However, 

this method can be severely affected by weather and light 

conditions, as well as by errors in the calibration stage. 

Inertial sensor-based systems for lameness detection and 

quantification are available. A commercially system consisting 

of two single-axis accelerometers and a gyroscope fitted to the 

horse’s poll, pelvis and right forelimb pastern respectively is 

available for clinical use (Equinosis, LLC). The use of this 

system has been validated for the detection of lameness and 

quantification of the response to diagnostic tests [7-10]. 

However, the use of these systems is limited to the examination 

of the horse during trotting only and are unsuitable for slower 

e.g. walk or faster e.g. gallop gaits. 

Radar sensors can provide useful information in the process of 

detecting and assessing lameness of horses, leveraging on the 

extensive research work and established techniques developed 

for the analysis of human radar signatures. These techniques 

exploit generally the micro-Doppler signatures, i.e. the 

additional Doppler components on the signatures of moving 

targets, which are caused by the swinging of limbs and 

movements of torso [11]. These have been extensively used for 

a variety of applications [12], such as detecting humans against 

possible false targets (vehicles, animals), classifying different 

activities performed by people, discriminating armed versus 

unarmed personnel, and identifying specific individuals from 

their walking gait.   

In the context of assessment of horses’ lameness, radar sensors 

can be attractive for their contactless and non-invasive sensing 

capabilities, with no need to attach to the horses’ body devices 

such as accelerometers and inertial sensors, with the potential 

of making the assessment procedure easier to carry out and 

faster. Furthermore, radar systems are expected to be capable 

of assessing horses’ gait at any speed (walk, trot, canter and 

gallop) and under any weather or lighting condition. This can 

address the limitation of video-graphic and 

inertial/accelerometers systems, whereby their accuracy can be 

severely limited for high-speed velocity of galloping horses. 

This paper presents preliminary results on the investigation of 

the use of radar sensors to identify signs of lameness or other 

irregularities in horses’ gait. The long-term aim of this work is 

to explore the suitability of radar-based techniques for 

lameness assessment of horses, as alternative and/or 

complementary technologies to kinematics techniques based 

on inertial sensors. In particular, micro-Doppler signature 

analysis and suitable feature extraction and classification 

techniques will be explored, with the objective of 

discriminating between radar signatures of healthy horses and 

horses exhibiting fore or hind limb lameness, and quantify its 

severity. There is rather limited literature describing and 

presenting the micro-Doppler radar signatures of animals [13, 

14], especially with the purpose of performing diagnosis on the 
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animals’ gait rather than for automatic target recognition 

purposes animals versus humans.  

This project is an interdisciplinary collaboration between the 

School of Engineering and the Weipers Centre Equine Hospital 

at the University of Glasgow, where the experimental trials will 

take place building on the experience of the veterinary 

clinicians in lameness assessment. The authors have previously 

demonstrated the use of inertial sensors to objectively assess 

flexion tests [10] and diagnostic anaesthesia [8], as well as 

providing valuable insight into compensatory load 

redistribution [7, 9].  

The paper is organized as follows. Section 2 presents a 

preliminary example of a simulated spectrogram of a walking 

horse based on Motion capture data. Section 3 describes the 

preliminary experimental trials and results of the data analysis. 

Finally, section 4 concludes the paper and outlines future work. 

2 Simulation of horse gait radar signature  

The generation of reliable simulated data describing radar 

signatures of horses’ gait can be very valuable to have a 

benchmark to compare experimental data with, and to obtain 

the required volume of data to achieve the necessary statistical 

significance when applying machine learning based 

classification techniques. Research work on simulated data 

with these objectives is also reported for human radar data [15]. 

Using examples of motion-captured data of walking horses, 

provided by courtesy of the Swedish University of Agriculture 

Sciences and Qualisys, radar signatures of horses walking 

towards the radar have been simulated with ranges varying 

from 30 down to 5 m. The data was acquired in Strömsholm, 

Sweden, in a sand school fitted with 60 cameras from Qualisys 

running at 200 frames per second. The horse was fitted with 39 

optical markers (4 on the head, 1 on withers, 7 markers on each 

forelimb, 4 markers on the pelvis and 8 markers on each hind 

limb) for the automatic extraction of motion capture data, as 

shown in Figure 1a).  

 
Figure 1: a) Motion capture data of the optical markers on a 

walking horse from the 39 markers [5], b) 3D model of horse 

c) spectrogram of walking horse (carrier frequency 5.8 GHz, 

PRF 1 kHz) 

The centre of the sand school is the centre of the Cartesian 

coordinate reference system. Using MATLAB basic fitting tool 

based on ‘shape-preserving interpolant’, the movements were 

up-sampled to 1000 fps to match the experimental pulse 

repetition frequency (PRF) of 1 kHz). The data was simulated 

at 5.8 GHz using an adapted approach based on the simulation 

in V. Chen’s book [16] and the radar cross section (RCS) 

model was superimposed on the optical data. The RCS has 

been modelled with spheres and ellipsoids as shown in Figure 

1b) that have analytical equations taking into consideration 

incident angles (azimuth, elevation) therefore resulting in more 

lifelike micro-Doppler signature as seen in Figure 1c) for the 

abovementioned scenario and also it matches the experimental 

radar parameters presented in section 3. 

 

3 Experimental setup and data analysis of horse 

gait radar signatures  

3.1 Experimental setup and data collection.  

Experimental data were collected at the Weipers Centre Equine 

Hospital of University of Glasgow, involving two horses, one 

exhibiting a sound, healthy gait, and another one (8 years old 

Warmblood gelding) with consistent right forelimb lameness 

at a trot in a straight line (AAEP Grade 3/5) in a relatively 

clutter free environment. The horses were led by a groom to 

walk and trot back and forth along a corridor space shown in 

Figure 2, with the radar located at the extremity of the corridor 

as indicated in Figure 2. Multiple radar captures were collected 

changing parameters such as the polarisation (vertical co-

polarised VV, horizontal co-polarised HH, and cross-polarised 

VH) and the range resolution of the radar waveform to 

investigate their effect on the signatures. Effort was made to 

collect repeated measurements of the same type of movement 

(walk or trot) for the two horses under test, but some 

differences must be expected for the non-cooperative nature of 

the targets of interest. 

The radar system is a commercial, off-the-shelf Frequency 

Modulated Continuous Wave (FMCW) radar system operating 

at a carrier frequency of 5.8GHz. The bandwidth of the linear 

frequency modulation was 400 MHz and 100 MHz 

(corresponding to range resolution of between 38 cm and 150 

cm). The duration of the chirp waveform was 1 ms, providing 

an unambiguous Doppler frequency range of ±500 Hz. The 

recorded datasets were between 25s and 40s long, each 

containing at least two captures of the horse micro-Doppler 

signature, one for the horse walking away from the radar and 

one with the horse walking towards it. Trotting sequences were 

also recorded in a similar manner. 28 datasets were recorded as 

a whole. The transmitted power of the radar was approximately 

+19 dBm, and the gain of the transmitter and receiver antennas 

was 17 dBi. The antennas were commercial off-the-shelf Yagi 

antennas with a beam-width of 24° in elevation and 24° in 

azimuth respectively. 

 

3.2 Micro-Doppler signatures and feature extraction.  
The data recorded from the radar system was passed through a 

moving target indicator (MTI) filter then processed using Short 

Time Fourier Transform (STFT), and the absolute value of the 

result was then squared to create spectrograms of each activity 
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set. The sliding window of the STFT had an overlap factor of 

95% and duration of 0.2 s. An example of the resulting 

spectrograms can be seen in figure 3, which shows the micro-

Doppler signature of a healthy and lame horse. 

Features were then extracted from the spectrograms to be used 

as input parameters for automatic classification. The 

spectrograms were segmented into 3s images, with 0.5 second 

shift to generate multiple images from the same spectrogram, 

in order to increase the number of available samples given the 

limited set of experimental data. A total number of images 

equal to 165 were generated, with each image being used to 

derive 3 feature samples, giving a total of 495 predictors within 

the feature set. 

The three features considered here were the mean of the 

centroid or centre of mass, the entropy of the image, and the 3rd 

order moment of the histogram containing pixel intensity 

values. These are explained in more detail below. 

Prior to feature extraction, the spectrograms were limited 

within the Doppler bins containing the horses’ signatures, 

discarding the Doppler bins with no signature at the highest 

positive and negative Doppler values. The positive parts of the 

spectrograms were mirrored in the negative Doppler region, in 

order to apply the same processing for both cases when the 

horses were moving towards the radar and away from it. 

The centre of mass of the spectrograms (known as centroid) is 

the estimated centre of the gravity of the micro-Doppler 

signature. This feature has previously been applied for 

personnel recognition [17]. The mathematical expression is 

reported in equation 1, where S(i,j) is the spectrogram at the ith 

Doppler bin and the jth time bin and f(i) is the Doppler 

frequency of the ith Doppler bin. The mean value of centroid 

appears to provide good separation between the healthy and 

lame horses’ data, as shown in Figure 4, with reduced values 

for the lame horses as they are expected to have reduced 

movement due to their condition.                                                                                                                                                                                                

 

  𝑓𝑐(𝑗) =
∑ 𝑓(𝑖)𝑆(𝑖,𝑗)𝑖

∑ 𝑆(𝑖,𝑗)𝑖
   (1) 

   

Regarding the second feature, in information theory entropy is 

described as the average information within a medium along 

with its complexity. Image entropy is a measure of the 

randomness of data within an image, which can be used to 

define the texture of an input image. It also represents the 

distribution and the concentration of energy within the image 

texture [14]. It is defined as:  

𝐸 = − ∑ 𝒑(𝑛)𝑙𝑜𝑔 𝒑(𝑛)𝑛  (3) 

Where p(n) is the energy distribution of the spectrogram, i.e. 

the grey levels of the spectrogram. Larger values of entropy are 

indicative of a complex texture, which suggests high overall 

movement. Lame horses by nature are expected to have more 

limited movements (thus, simpler texture) which translates to 

lower overall movement.  

 

 
Figure 2: Weipers centre equine hospital corridor and 

experimental setup with radar system. 

 

 
 

Figure 3: Spectrogram of a healthy (top) and lame (bottom) 

trotting horses 

 
Figure 4: Centre of mass of the radar micro-Doppler signature 

for healthy and lame horses 

 



4 

The 3rd order moment of statistical histogram represents the 

skewness of the data and the symmetry of the curve of the 

histogram’s envelope, as well as the fluctuations of the grey 

scale within the image [14].  The nth order moment is defined 

in [18] as in equations 4-5, where p(r) is the envelope of the 

histogram representing the probability of r being a certain grey 

level between 0 and L, i.e. the envelope of the spectrogram, 

and ri is the variable representing greyness of a pixel. A 

skewness equal to zero is related to a symmetric histogram, and 

therefore a very regular movement. As the lame horse is 

expected to exhibit more irregular, less symmetric movement 

than the healthy horse, the expectation is that the skewness 

parameter will be lower and closer to zero for healthy horse 

data. 

𝑓𝑚 = 𝑚𝑒𝑎𝑛[𝑝(𝑟)]    (4) 

𝑀𝑛 =  ∑ (𝑟𝑖 − 𝑓𝑚)𝑛𝑝(𝑟𝑖)
𝐿−1
𝑖=0    (5)  

 

Figure 5 shows feature space plots for the three considered 

features, using together samples related to both healthy and 

lame horses, walking and trotting. The entropy and the 3rd order 

moment or skewness appears to provide good separation 

between the two classes of lame horses and healthy horses. 

 
Figure 5: Feature space scatter plots for different features: (a) skewness, entropy and centroid, (b) entropy and centroid, (c) 

skewness and entropy, and (d) skewness and centroid 

 

3.2 Classifiers and Results 

A Support Vector Machine (SVM) with Gaussian radial basis 

functions and a Nearest Neighbour (kNN) classifier with 5 

neighbours were used to classify the horse data into two 

classes: “lame horse” and “healthy horse”. A detailed 

description of the classifiers can be found in [19]. 

The feature set was partitioned into four equal groups of data; 

three were then used to train the classifier (75%), with the 

fourth one used for testing (25%). This was repeated four 

times, with random changes of the samples chosen for training 

and testing to test the robustness of the proposed approach (4-

fold cross-validation). 

The results are shown in the confusion matrices in table I and 

II, for the two different classifiers. 15 out of 165 predictions 

were incorrectly classified for the SVM classifier, providing an 

accuracy of approximately 90%. The k-NN classifier presented 

similar performance, with 16 misclassification events out of 

165. It can be seen that the majority of the errors implies 

classifying a lame horse as a healthy one, which is an element 

to address to improve the robustness and the applicability of 

the proposed method. The results are nevertheless 

encouraging, showing that differences in horses’ gait can be 

correctly inferred from the radar signatures. 

 

 

TRUE/PREDICTED LAME 
HORSE 

REGULAR 
HORSE 

LAME HORSE 52 14 

REGULAR HORSE 1 98 

   

 

Table 1 Confusion matrix for SVM classifier 
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4 Conclusion and future work  

This paper has presented preliminary results of the 

investigation of radar sensors and micro-Doppler signatures to 

assess horses’ lameness. Three features have been extracted 

from experimental radar signatures and used as inputs to two 

classifiers, achieving accuracy in the region of 90%. 

Radar micro-Doppler signatures are more challenging to 

analyse than human signatures. This is likely to be related to 

the different kinematics of the horses’ gait on 4 limbs rather 

than on 2 limbs as for humans. For the data considered here, 

there is also an additional complexity factor to collect reliable 

large amount of experimental data, as horses are non-

cooperative targets, and maintaining exactly the same 

trajectories and aspect angles for all the recorded datasets was 

not possible. Furthermore, the generation of multiple images 

from the same spectrogram to increase artificially the number 

of available feature samples can affect the data and introduce 

correlation that has an impact on the final classification results. 

Additional work will be performed by addressing these issues 

in further data collection, including different horses and where 

possible horses with different levels of lameness. This will 

enable a more accurate investigation of possible features to 

improve the detection of lameness in horses, as a function of 

the many radar and operational parameters. The exploitation of 

simulated data to be combined and compared with the 

experimental data will be also explored. The influence of 

clutter levels in the experimental environment will be also 

characterised, for example indoor vs outdoor environments 

where the horse can move, as well as the presence of objects 

around. In this current work, static clutter has been filtered 

from the micro-Doppler signatures by using a MTI filter, but it 

is expected that slow moving clutter (for example foliage 

outdoor or other animals nearby) can have an effect on the 

accuracy of the proposed method. 

Finally, it would be recommended that the horses be classified 

separately, i.e. without mixing data referring to the trotting and 

walking movements. These not only exhibit different 

velocities, where trotting is a faster movement, but also 

different kinematics of the limb position, where walking is a 4-

beat gait and trotting a 2-beat gait. Figure 6 shows the feature 

space plot for walking and trotting movements, and the 

separation between healthy horses and lame horses is much 

clearer than in the previous case (Figure 6), when samples 

related to both types of movements were mixed together. 

Furthermore, the simulated micro-Doppler signatures 

presented in section 2 will allow a parametric study on the 

effects on the classification performance depending geometry 

configuration (azimuth, elevation, monostatic, multistatic) and 

parameters (frequency, bandwidth). 
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Figure 6: Feature space plot for walking (top) and trotting 

(bottom)  
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