1,756 research outputs found
Pseudoconvex domains spread over complex homogeneous manifolds
Using the concept of inner integral curves defined by Hirschowitz we
generalize a recent result by Kim, Levenberg and Yamaguchi concerning the
obstruction of a pseudoconvex domain spread over a complex homogeneous manifold
to be Stein. This is then applied to study the holomorphic reduction of
pseudoconvex complex homogeneous manifolds X=G/H. Under the assumption that G
is solvable or reductive we prove that X is the total space of a G-equivariant
holomorphic fiber bundle over a Stein manifold such that all holomorphic
functions on the fiber are constant.Comment: 21 page
Polarised epithelial monolayers of the gastric mucosa reveal insights into mucosal homeostasis and defence against infection
Objective Helicobacter pylori causes life-long colonisation of the gastric mucosa, leading to chronic inflammation with increased risk of gastric cancer. Research on the pathogenesis of this infection would strongly benefit from an authentic human in vitro model. Design Antrum-derived gastric glands from surgery specimens served to establish polarised epithelial monolayers via a transient airâliquid interface culture stage to study cross-talk with H. pylori and the adjacent stroma. Results The resulting âmucosoid culturesâ, so named because they recapitulate key characteristics of the gastric mucosa, represent normal stem cell-driven cultures that can be passaged for months. These highly polarised columnar epithelial layers encompass the various gastric antral cell types and secrete mucus at the apical surface. By default, they differentiate towards a foveolar, MUC5AC-producing phenotype, whereas Wnt signalling stimulates proliferation of MUC6-producing cells and preserves stemnessâreminiscent of the gland base. Stromal cells from the lamina propria secrete Wnt inhibitors, antagonising stem-cell niche signalling and inducing differentiation. On infection with H. pylori, a strong inflammatory response is induced preferentially in the undifferentiated basal cell phenotype. Infection of cultures for several weeks produces foci of viable bacteria and a persistent inflammatory condition, while the secreted mucus establishes a barrier that only few bacteria manage to overcome. Conclusion Gastric mucosoid cultures faithfully reproduce the features of normal human gastric epithelium, enabling new approaches for investigating the interaction of H. pylori with the epithelial surface and the cross-talk with the basolateral stromal compartment. Our observations provide striking insights in the regulatory circuits of inflammation and defence.</p
Photoelectro-Photometric Survey of Night Sky Conditions in the Vicinity of Iowa City
During the summer 1962, a systematic survey of night sky conditions in the vicinity of Iowa City was carried out for the purpose of selecting the best site for the proposed research observatory of the State University of Iowa. A photoelectric photometer was attached to the Newtonian focus of an 11-inch reflector whose equatorial mounting was modified to a horizontal system. The equipment was carried by a truck and observations were made at six different sites, ranging in distance from eight to twenty-three miles in all directions from the city. In order to eliminate random errors due to variations in sky conditions from night to night, measurements of scattered city lights and the atmospheric extinctions were taken on at least two different sites during the same night and were repeated for six or seven different moonless nights at each site. As a result, it was concluded that the region about twelve miles south-southwest of the city is least affected by the artificial city light
FLOURY ENDOSPERM 6 mutations enhance the sugary phenotype caused by the loss of ISOAMYLASE1 in barley
Starch is a biologically and commercially important glucose polymer synthesized by plants as semicrystalline starch granules (SGs). Because SG morphology affects starch properties, mutants with altered SG morphology may be useful in breeding crops with desirable starch properties, including potentially novel properties. In this study, we employed a simple screen for mutants with altered SG morphology in barley (Hordeum vulgare). We isolated mutants that formed compound SGs together with the normal simple SGs in the endosperm and found that they were allelic mutants of the starch biosynthesis genes ISOAMYLASE1 (HvISA1) and FLOURY ENDOSPERM 6 (HvFLO6), encoding starch debranching enzyme and CARBOHYDRATE-BINDING MODULE 48-containing protein, respectively. We generated the hvflo6 hvisa1 double mutant and showed that it had significantly reduced starch biosynthesis and developed shrunken grains. In contrast to starch, soluble α-glucan, phytoglycogen, and sugars accumulated to higher levels in the double mutant than in the single mutants. In addition, the double mutants showed defects in SG morphology in the endosperm and in the pollen. This novel genetic interaction suggests that hvflo6 acts as an enhancer of the sugary phenotype caused by hvisa1 mutation
Implementation of higher-order absorbing boundary conditions for the Einstein equations
We present an implementation of absorbing boundary conditions for the
Einstein equations based on the recent work of Buchman and Sarbach. In this
paper, we assume that spacetime may be linearized about Minkowski space close
to the outer boundary, which is taken to be a coordinate sphere. We reformulate
the boundary conditions as conditions on the gauge-invariant
Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated
by rewriting the boundary conditions as a system of ODEs for a set of auxiliary
variables intrinsic to the boundary. From these we construct boundary data for
a set of well-posed constraint-preserving boundary conditions for the Einstein
equations in a first-order generalized harmonic formulation. This construction
has direct applications to outer boundary conditions in simulations of isolated
systems (e.g., binary black holes) as well as to the problem of
Cauchy-perturbative matching. As a test problem for our numerical
implementation, we consider linearized multipolar gravitational waves in TT
gauge, with angular momentum numbers l=2 (Teukolsky waves), 3 and 4. We
demonstrate that the perfectly absorbing boundary condition B_L of order L=l
yields no spurious reflections to linear order in perturbation theory. This is
in contrast to the lower-order absorbing boundary conditions B_L with L<l,
which include the widely used freezing-Psi_0 boundary condition that imposes
the vanishing of the Newman-Penrose scalar Psi_0.Comment: 25 pages, 9 figures. Minor clarifications. Final version to appear in
Class. Quantum Grav
Full sphere hydrodynamic and dynamo benchmarks
Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that allow easy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourierâfinite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results
Combining the bulk transfer formulation and surface renewal analysis for estimating the sensible heat flux without involving the parameter KB-1
The singleâsource bulk transfer formulation (based on the MoninâObukhov Similarity Theory, MOST) has been used to estimate the sensible heat flux, H, in the framework of remote sensing over homogeneous surfaces (HMOST). The latter involves the canopy parameter, , which is difficult to parameterize. Over short and dense grass at a site influenced by regional advection of sensible heat flux, HMOST with â=â2 (i.e., the value recommended) correlated strongly with the H measured using the Eddy Covariance, EC, method, HEC. However, it overestimated HEC by 50% under stable conditions for samples showing a local air temperature gradient larger than the measurement error, 0.4 kmâ1. Combining MOST and Surface Renewal analysis, three methods of estimating H that avoid dependency have been derived. These new expressions explain the variability of H versus , where is the friction velocity, is the radiometric surface temperature, and is the air temperature at height, z. At two measurement heights, the three methods performed excellently. One of the methods developed required the same readily/commonly available inputs as HMOST due to the fact that the ratio between and the ramp amplitude was found fairly constant under stable and unstable cases. Over homogeneous canopies, at a site influenced by regional advection of sensible heat flux, the methods proposed are an alternative to the traditional bulk transfer method because they are reliable, exempt of calibration against the EC method, and are comparable or identical in cost of application. It is suggested that the methodology may be useful over bare soil and sparse vegetation.This research was funded by CERESS project AGL2011â30498 (Ministerio de EconomĂa y Competitividad of Spain, cofunded FEDER), CGL2012â37416âC04â01 (Ministerio de Ciencia y InnovaciĂłn of Spain), and CEI Iberus, 2014 (Proyecto financiado por el Ministerio de EducaciĂłn en el marco del Programa Campus de Excelencia Internacional of Spain)
Internal states of model isotropic granular packings. III. Elastic properties
In this third and final paper of a series, elastic properties of numerically
simulated isotropic packings of spherical beads assembled by different
procedures and subjected to a varying confining pressure P are investigated. In
addition P, which determines the stiffness of contacts by Hertz's law, elastic
moduli are chiefly sensitive to the coordination number, the possible values of
which are not necessarily correlated with the density. Comparisons of numerical
and experimental results for glass beads in the 10kPa-10MPa range reveal
similar differences between dry samples compacted by vibrations and lubricated
packings. The greater stiffness of the latter, in spite of their lower density,
can hence be attributed to a larger coordination number. Voigt and Reuss bounds
bracket bulk modulus B accurately, but simple estimation schemes fail for shear
modulus G, especially in poorly coordinated configurations under low P.
Tenuous, fragile networks respond differently to changes in load direction, as
compared to load intensity. The shear modulus, in poorly coordinated packings,
tends to vary proportionally to the degree of force indeterminacy per unit
volume. The elastic range extends to small strain intervals, in agreement with
experimental observations. The origins of nonelastic response are discussed. We
conclude that elastic moduli provide access to mechanically important
information about coordination numbers, which escape direct measurement
techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
- âŠ