626 research outputs found

    Obesity and Albuminuria Among Adults With Type 2 Diabetes: The Look AHEAD (Action for Health in Diabetes) Study

    Get PDF
    This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online a

    Asymmetry of planum temporale constrains interhemispheric language plasticity in children with focal epilepsy.

    Get PDF
    Reorganization of eloquent cortex enables rescue of language functions in patients who sustain brain injury. Individuals with left-sided, early-onset focal epilepsy often show atypical (i.e. bilateral or right-sided) language dominance. Surprisingly, many patients fail to show such interhemispheric shift of language despite having major epileptogenic lesions in close proximity to eloquent cortex. Although a number of epilepsy-related factors may promote interhemispheric plasticity, it has remained unexplored if neuroanatomical asymmetries linked to human language dominance modify the likelihood of atypical lateralization. Here we examined the asymmetry of the planum temporale, one of the most striking asymmetries in the human brain, in relation to language lateralization in children with left-sided focal epilepsy. Language functional magnetic resonance imaging was performed in 51 children with focal epilepsy and left-sided lesions and 36 healthy control subjects. We examined the association of language laterality with a range of potential clinical predictors and the asymmetry of the length of the planum temporale. Using voxel-based methods, we sought to determine the effect of lesion location (in the affected left hemisphere) and grey matter density (in the unaffected right hemisphere) on language laterality. Atypical language lateralization was observed in 19 patients (38%) and in four controls (11%). Language laterality was increasingly right-sided in patients who showed atypical handedness, a left perisylvian ictal electroencephalographic focus, and a lesion in left anterior superior temporal or inferior frontal regions. Most striking was the relationship between rightward asymmetry of the planum temporale and atypical language (R = 0.70, P < 0.0001); patients with a longer planum temporale in the right (unaffected) hemisphere were more likely to have atypical language dominance. Voxel-based regression analysis confirmed that increased grey matter density in the right temporo-parietal junction was correlated with right hemisphere lateralization of language. The length of the planum temporale in the right hemisphere was the main predictor of language lateralization in the epilepsy group, accounting for 48% of variance, with handedness accounting for only a further 5%. There was no correlation between language lateralization and planum temporale asymmetry in the control group. We conclude that asymmetry of the planum temporale may be unrelated to language lateralization in healthy individuals, but the size of the right, contra-lesional planum temporale region may reflect a 'reserve capacity' for interhemispheric language reorganization in the presence of a seizure focus and lesions within left perisylvian regions

    The use of magical plants by curanderos in the Ecuador highlands

    Get PDF
    Although the use of plants for treating supernaturally caused illnesses (e.g., soul loss, evil wind, witchcraft) has been documented in the Ecuador highlands, so-called magical plants have received much less focused attention than plants used for treating naturalistic disorders. Drawing on interviews done in 2002 and 2003 with 116 curanderos residing in the Ecuador highlands, this paper examines the characteristics of plants identified as magical, how they are used, and how the study of magical plants provides insights into the mindscape of residents of the highlands

    Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management in California

    Get PDF
    A growing population and an increased demand for water resources have resulted in a global trend of groundwater depletion. Arid and semi-arid climates are particularly susceptible, often relying on groundwater to support large population centers or irrigated agriculture in the absence of sufficient surface water resources. In an effort to increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the approach of intentionally harvesting and infiltrating water to recharge depleted aquifer storage. California is a prime example of this growing problem, with three cities that have over a million residents and an agricultural industry that was valued at 47 billion dollars in 2015. The present-day groundwater overdraft of over 100 km3 (since 1962) indicates a clear disparity between surface water supply and water demand within the state. In the face of groundwater overdraft and the anticipated effects of climate change, many new MAR projects are being constructed or investigated throughout California, adding to those that have existed for decades. Some common MAR types utilized in California include injection wells, infiltration basins (also known as spreading basins, percolation basins, or recharge basins), and low-impact development. An emerging MAR type that is actively being investigated is the winter flooding of agricultural fields using existing irrigation infrastructure and excess surface water resources, known as agricultural MAR. California therefore provides an excellent case study to look at the historical use and performance of MAR, ongoing and emerging challenges, novel MAR applications, and the potential for expansion of MAR. Effective MAR projects are an essential tool for increasing groundwater security, both in California and on a global scale. This chapter aims to provide an overview of the most common MAR types and applications within the State of California and neighboring semi-arid regions

    Angiogenin protects motoneurons against hypoxic injury.

    Get PDF
    Cells can adapt to hypoxia through the activation of hypoxia-inducible factor-1 (HIF-1), which in turn regulates the expression of hypoxia-responsive genes. Defects in hypoxic signaling have been suggested to underlie the degeneration of motoneurons in amyotrophic lateral sclerosis (ALS). We have recently identified mutations in the hypoxia-responsive gene, angiogenin (ANG), in ALS patients, and have shown that ANG is constitutively expressed in motoneurons. Here, we show that HIF-1alpha is sufficient and required to activate ANG in cultured motoneurons exposed to hypoxia, although ANG expression does not change in a transgenic ALS mouse model or in sporadic ALS patients. Administration of recombinant ANG or expression of wild-type ANG protected motoneurons against hypoxic injury, whereas gene silencing of ang1 significantly increased hypoxia-induced cell death. The previously reported ALS-associated ANG mutations (Q12L, K17I, R31K, C39W, K40I, I46V) all showed a reduced neuroprotective activity against hypoxic injury. Our data show that ANG plays an important role in endogenous protective pathways of motoneurons exposed to hypoxia, and suggest that loss of function rather than loss of expression of ANG is associated with ALS
    corecore