233 research outputs found

    Microscopic interface phonon modes in structures of GaAs quantum dots embedded in AlAs shells

    Full text link
    By means of a microscopic valence force field model, a series of novel microscopic interface phonon modes are identified in shell quantum dots(SQDs) composed of a GaAs quantum dot of nanoscale embedded in an AlAs shell of a few atomic layers in thickness. In SQDs with such thin shells, the basic principle of the continuum dielectric model and the macroscopic dielectric function are not valid any more. The frequencies of these microscopic interface modes lie inside the gap between the bulk GaAs band and the bulk AlAs band, contrary to the macroscopic interface phonon modes. The average vibrational energies and amplitudes of each atomic shell show peaks at the interface between GaAs and AlAs. These peaks decay fast as their penetrating depths from the interface increase.Comment: 13 pages, 4 figure

    A wide band gap metal-semiconductor-metal nanostructure made entirely from graphene

    Full text link
    A blueprint for producing scalable digital graphene electronics has remained elusive. Current methods to produce semiconducting-metallic graphene networks all suffer from either stringent lithographic demands that prevent reproducibility, process-induced disorder in the graphene, or scalability issues. Using angle resolved photoemission, we have discovered a unique one dimensional metallic-semiconducting-metallic junction made entirely from graphene, and produced without chemical functionalization or finite size patterning. The junction is produced by taking advantage of the inherent, atomically ordered, substrate-graphene interaction when it is grown on SiC, in this case when graphene is forced to grow over patterned SiC steps. This scalable bottomup approach allows us to produce a semiconducting graphene strip whose width is precisely defined within a few graphene lattice constants, a level of precision entirely outside modern lithographic limits. The architecture demonstrated in this work is so robust that variations in the average electronic band structure of thousands of these patterned ribbons have little variation over length scales tens of microns long. The semiconducting graphene has a topologically defined few nanometer wide region with an energy gap greater than 0.5 eV in an otherwise continuous metallic graphene sheet. This work demonstrates how the graphene-substrate interaction can be used as a powerful tool to scalably modify graphene's electronic structure and opens a new direction in graphene electronics research.Comment: 11 pages, 7 figure

    Enhancement of the spin-gap in fully occupied two-dimensional Landau levels

    Full text link
    Polarization-resolved magneto-luminescence, together with simultaneous magneto-transport measurements, have been performed on a two-dimensional electron gas (2DEG) confined in CdTe quantum well in order to determine the spin-splitting of fully occupied electronic Landau levels, as a function of the magnetic field (arbitrary Landau level filling factors) and temperature. The spin splitting, extracted from the energy separation of the \sigma+ and \sigma- transitions, is composed of the ordinary Zeeman term and a many-body contribution which is shown to be driven by the spin-polarization of the 2DEG. It is argued that both these contributions result in a simple, rigid shift of Landau level ladders with opposite spins.Comment: 4 pages, 3 figure

    On equations over sets of integers

    Get PDF
    Systems of equations with sets of integers as unknowns are considered. It is shown that the class of sets representable by unique solutions of equations using the operations of union and addition S+T=\makeset{m+n}{m \in S, \: n \in T} and with ultimately periodic constants is exactly the class of hyper-arithmetical sets. Equations using addition only can represent every hyper-arithmetical set under a simple encoding. All hyper-arithmetical sets can also be represented by equations over sets of natural numbers equipped with union, addition and subtraction S \dotminus T=\makeset{m-n}{m \in S, \: n \in T, \: m \geqslant n}. Testing whether a given system has a solution is ÎŁ11\Sigma^1_1-complete for each model. These results, in particular, settle the expressive power of the most general types of language equations, as well as equations over subsets of free groups.Comment: 12 apges, 0 figure

    Effect of pressure on the Raman modes of antimony

    Full text link
    The effect of pressure on the zone-center optical phonon modes of antimony in the A7 structure has been investigated by Raman spectroscopy. The A_g and E_g frequencies exhibit a pronounced softening with increasing pressure, the effect being related to a gradual suppression of the Peierls-like distortion of the A7 phase relative to a cubic primitive lattice. Also, both Raman modes broaden significantly under pressure. Spectra taken at low temperature indicate that the broadening is at least partly caused by phonon-phonon interactions. We also report results of ab initio frozen-phonon calculations of the A_g and E_g mode frequencies. Presence of strong anharmonicity is clearly apparent in calculated total energy versus atom displacement relations. Pronounced nonlinearities in the force versus displacement relations are observed. Structural instabilities of the Sb-A7 phase are briefly addressed in the Appendix.Comment: 10 pages, 8 figure

    Electronic dielectric constants of insulators by the polarization method

    Full text link
    We discuss a non-perturbative, technically straightforward, easy-to-use, and computationally affordable method, based on polarization theory, for the calculation of the electronic dielectric constant of insulating solids at the first principles level. We apply the method to GaAs, AlAs, InN, SiC, ZnO, GaN, AlN, BeO, LiF, PbTiO3_3, and CaTiO3_3. The predicted \einf's agree well with those given by Density Functional Perturbation Theory (the reference theoretical treatment), and they are generally within less than 10 % of experiment.Comment: RevTeX 4 pages, 2 ps figure

    Conduct and reporting of formula milk trials: systematic review

    Get PDF
    Objective To systematically review the conduct and reporting of formula trials. Design Systematic review. Data sources Medline, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) were searched from 1 January 2006 to 31 December 2020. Review methods Intervention trials comparing at least two formula products in children less than three years of age were included, but not trials of human breast milk or fortifiers of breast milk. Data were extracted in duplicate and primary outcome data were synthesised for meta-analysis with a random effects model weighted by the inverse variance method. Risk of bias was evaluated with Cochrane risk of bias version 2.0, and risk of undermining breastfeeding was evaluated according to published consensus guidance. Primary outcomes of the trials included in the systematic review were identified from clinical trial registries, protocols, or trial publications. Results 22 201 titles were screened and 307 trials were identified that were published between 2006 and 2020, of which 73 (24%) trials in 13 197 children were prospectively registered. Another 111 unpublished but registered trials in 17 411 children were identified. Detailed analysis was undertaken for 125 trials (23 757 children) published since 2015. Seventeen (14%) of these recently published trials were conducted independently of formula companies, 26 (21%) were prospectively registered with a clear aim and primary outcome, and authors or sponsors shared prospective protocols for 11 (9%) trials. Risk of bias was low in five (4%) and high in 100 (80%) recently published trials, mainly because of inappropriate exclusions from analysis and selective reporting. For 68 recently published superiority trials, a pooled standardised mean difference of 0.51 (range −0.43 to 3.29) was calculated with an asymmetrical funnel plot (Egger’s test P<0.001), which reduced to 0.19 after correction for asymmetry. Primary outcomes were reported by authors as favourable in 86 (69%) trials, and 115 (92%) abstract conclusions were favourable. One of 38 (3%) trials in partially breastfed infants reported adequate support for breastfeeding and 14 of 87 (16%) trials in non-breastfed infants confirmed the decision not to breastfeed was firmly established before enrolment in the trial. Conclusions The results show that formula trials lack independence or transparency, and published outcomes are biased by selective reporting. Systematic review registration PROSPERO 2018 CRD42018091928

    On inelastic hydrogen atom collisions in stellar atmospheres

    Full text link
    The influence of inelastic hydrogen atom collisions on non-LTE spectral line formation has been, and remains to be, a significant source of uncertainty for stellar abundance analyses, due to the difficulty in obtaining accurate data for low-energy atomic collisions either experimentally or theoretically. For lack of a better alternative, the classical "Drawin formula" is often used. Over recent decades, our understanding of these collisions has improved markedly, predominantly through a number of detailed quantum mechanical calculations. In this paper, the Drawin formula is compared with the quantum mechanical calculations both in terms of the underlying physics and the resulting rate coefficients. It is shown that the Drawin formula does not contain the essential physics behind direct excitation by H atom collisions, the important physical mechanism being quantum mechanical in character. Quantitatively, the Drawin formula compares poorly with the results of the available quantum mechanical calculations, usually significantly overestimating the collision rates by amounts that vary markedly between transitions.Comment: 9 pages, 6 figures, accepted for A&

    Circular polarization in a non-magnetic resonant tunneling device

    Get PDF
    We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects

    Record Maximum Oscillation Frequency in C-face Epitaxial Graphene Transistors

    Full text link
    The maximum oscillation frequency (fmax) quantifies the practical upper bound for useful circuit operation. We report here an fmax of 70 GHz in transistors using epitaxial graphene grown on the C-face of SiC. This is a significant improvement over Si-face epitaxial graphene used in the prior high frequency transistor studies, exemplifying the superior electronics potential of C-face epitaxial graphene. Careful transistor design using a high {\kappa} dielectric T-gate and self-aligned contacts, further contributed to the record-breaking fmax
    • 

    corecore