233 research outputs found
Microscopic interface phonon modes in structures of GaAs quantum dots embedded in AlAs shells
By means of a microscopic valence force field model, a series of novel
microscopic interface phonon modes are identified in shell quantum dots(SQDs)
composed of a GaAs quantum dot of nanoscale embedded in an AlAs shell of a few
atomic layers in thickness. In SQDs with such thin shells, the basic principle
of the continuum dielectric model and the macroscopic dielectric function are
not valid any more. The frequencies of these microscopic interface modes lie
inside the gap between the bulk GaAs band and the bulk AlAs band, contrary to
the macroscopic interface phonon modes. The average vibrational energies and
amplitudes of each atomic shell show peaks at the interface between GaAs and
AlAs. These peaks decay fast as their penetrating depths from the interface
increase.Comment: 13 pages, 4 figure
A wide band gap metal-semiconductor-metal nanostructure made entirely from graphene
A blueprint for producing scalable digital graphene electronics has remained
elusive. Current methods to produce semiconducting-metallic graphene networks
all suffer from either stringent lithographic demands that prevent
reproducibility, process-induced disorder in the graphene, or scalability
issues. Using angle resolved photoemission, we have discovered a unique one
dimensional metallic-semiconducting-metallic junction made entirely from
graphene, and produced without chemical functionalization or finite size
patterning. The junction is produced by taking advantage of the inherent,
atomically ordered, substrate-graphene interaction when it is grown on SiC, in
this case when graphene is forced to grow over patterned SiC steps. This
scalable bottomup approach allows us to produce a semiconducting graphene strip
whose width is precisely defined within a few graphene lattice constants, a
level of precision entirely outside modern lithographic limits. The
architecture demonstrated in this work is so robust that variations in the
average electronic band structure of thousands of these patterned ribbons have
little variation over length scales tens of microns long. The semiconducting
graphene has a topologically defined few nanometer wide region with an energy
gap greater than 0.5 eV in an otherwise continuous metallic graphene sheet.
This work demonstrates how the graphene-substrate interaction can be used as a
powerful tool to scalably modify graphene's electronic structure and opens a
new direction in graphene electronics research.Comment: 11 pages, 7 figure
Enhancement of the spin-gap in fully occupied two-dimensional Landau levels
Polarization-resolved magneto-luminescence, together with simultaneous
magneto-transport measurements, have been performed on a two-dimensional
electron gas (2DEG) confined in CdTe quantum well in order to determine the
spin-splitting of fully occupied electronic Landau levels, as a function of the
magnetic field (arbitrary Landau level filling factors) and temperature. The
spin splitting, extracted from the energy separation of the \sigma+ and \sigma-
transitions, is composed of the ordinary Zeeman term and a many-body
contribution which is shown to be driven by the spin-polarization of the 2DEG.
It is argued that both these contributions result in a simple, rigid shift of
Landau level ladders with opposite spins.Comment: 4 pages, 3 figure
On equations over sets of integers
Systems of equations with sets of integers as unknowns are considered. It is
shown that the class of sets representable by unique solutions of equations
using the operations of union and addition S+T=\makeset{m+n}{m \in S, \: n \in
T} and with ultimately periodic constants is exactly the class of
hyper-arithmetical sets. Equations using addition only can represent every
hyper-arithmetical set under a simple encoding. All hyper-arithmetical sets can
also be represented by equations over sets of natural numbers equipped with
union, addition and subtraction S \dotminus T=\makeset{m-n}{m \in S, \: n \in
T, \: m \geqslant n}. Testing whether a given system has a solution is
-complete for each model. These results, in particular, settle the
expressive power of the most general types of language equations, as well as
equations over subsets of free groups.Comment: 12 apges, 0 figure
Effect of pressure on the Raman modes of antimony
The effect of pressure on the zone-center optical phonon modes of antimony in
the A7 structure has been investigated by Raman spectroscopy. The A_g and E_g
frequencies exhibit a pronounced softening with increasing pressure, the effect
being related to a gradual suppression of the Peierls-like distortion of the A7
phase relative to a cubic primitive lattice. Also, both Raman modes broaden
significantly under pressure. Spectra taken at low temperature indicate that
the broadening is at least partly caused by phonon-phonon interactions. We also
report results of ab initio frozen-phonon calculations of the A_g and E_g mode
frequencies. Presence of strong anharmonicity is clearly apparent in calculated
total energy versus atom displacement relations. Pronounced nonlinearities in
the force versus displacement relations are observed. Structural instabilities
of the Sb-A7 phase are briefly addressed in the Appendix.Comment: 10 pages, 8 figure
Electronic dielectric constants of insulators by the polarization method
We discuss a non-perturbative, technically straightforward, easy-to-use, and
computationally affordable method, based on polarization theory, for the
calculation of the electronic dielectric constant of insulating solids at the
first principles level. We apply the method to GaAs, AlAs, InN, SiC, ZnO, GaN,
AlN, BeO, LiF, PbTiO, and CaTiO. The predicted \einf's agree well
with those given by Density Functional Perturbation Theory (the reference
theoretical treatment), and they are generally within less than 10 % of
experiment.Comment: RevTeX 4 pages, 2 ps figure
Conduct and reporting of formula milk trials: systematic review
Objective To systematically review the conduct and reporting of formula trials. Design Systematic review. Data sources Medline, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) were searched from 1 January 2006 to 31 December 2020. Review methods Intervention trials comparing at least two formula products in children less than three years of age were included, but not trials of human breast milk or fortifiers of breast milk. Data were extracted in duplicate and primary outcome data were synthesised for meta-analysis with a random effects model weighted by the inverse variance method. Risk of bias was evaluated with Cochrane risk of bias version 2.0, and risk of undermining breastfeeding was evaluated according to published consensus guidance. Primary outcomes of the trials included in the systematic review were identified from clinical trial registries, protocols, or trial publications. Results 22â201 titles were screened and 307 trials were identified that were published between 2006 and 2020, of which 73 (24%) trials in 13â197 children were prospectively registered. Another 111 unpublished but registered trials in 17â411 children were identified. Detailed analysis was undertaken for 125 trials (23â757 children) published since 2015. Seventeen (14%) of these recently published trials were conducted independently of formula companies, 26 (21%) were prospectively registered with a clear aim and primary outcome, and authors or sponsors shared prospective protocols for 11 (9%) trials. Risk of bias was low in five (4%) and high in 100 (80%) recently published trials, mainly because of inappropriate exclusions from analysis and selective reporting. For 68 recently published superiority trials, a pooled standardised mean difference of 0.51 (range â0.43 to 3.29) was calculated with an asymmetrical funnel plot (Eggerâs test P<0.001), which reduced to 0.19 after correction for asymmetry. Primary outcomes were reported by authors as favourable in 86 (69%) trials, and 115 (92%) abstract conclusions were favourable. One of 38 (3%) trials in partially breastfed infants reported adequate support for breastfeeding and 14 of 87 (16%) trials in non-breastfed infants confirmed the decision not to breastfeed was firmly established before enrolment in the trial. Conclusions The results show that formula trials lack independence or transparency, and published outcomes are biased by selective reporting. Systematic review registration PROSPERO 2018 CRD42018091928
On inelastic hydrogen atom collisions in stellar atmospheres
The influence of inelastic hydrogen atom collisions on non-LTE spectral line
formation has been, and remains to be, a significant source of uncertainty for
stellar abundance analyses, due to the difficulty in obtaining accurate data
for low-energy atomic collisions either experimentally or theoretically. For
lack of a better alternative, the classical "Drawin formula" is often used.
Over recent decades, our understanding of these collisions has improved
markedly, predominantly through a number of detailed quantum mechanical
calculations. In this paper, the Drawin formula is compared with the quantum
mechanical calculations both in terms of the underlying physics and the
resulting rate coefficients. It is shown that the Drawin formula does not
contain the essential physics behind direct excitation by H atom collisions,
the important physical mechanism being quantum mechanical in character.
Quantitatively, the Drawin formula compares poorly with the results of the
available quantum mechanical calculations, usually significantly overestimating
the collision rates by amounts that vary markedly between transitions.Comment: 9 pages, 6 figures, accepted for A&
Circular polarization in a non-magnetic resonant tunneling device
We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects
Record Maximum Oscillation Frequency in C-face Epitaxial Graphene Transistors
The maximum oscillation frequency (fmax) quantifies the practical upper bound
for useful circuit operation. We report here an fmax of 70 GHz in transistors
using epitaxial graphene grown on the C-face of SiC. This is a significant
improvement over Si-face epitaxial graphene used in the prior high frequency
transistor studies, exemplifying the superior electronics potential of C-face
epitaxial graphene. Careful transistor design using a high {\kappa} dielectric
T-gate and self-aligned contacts, further contributed to the record-breaking
fmax
- âŠ