307 research outputs found

    Open ventral hernia repair with a composite ventral patch : final results of a multicenter prospective study

    Get PDF
    Background: This study assessed clinical outcomes, including safety and recurrence, from the two-year follow-up of patients who underwent open ventral primary hernia repair with the use of the Parietex (TM) Composite Ventral Patch (PCO-VP). Methods: A prospective single-arm, multicenter study of 126 patients undergoing open ventral hernia repair for umbilical and epigastric hernias with the PCO-VP was performed. Results: One hundred twenty-six subjects (110 with umbilical hernia and 16 with epigastric hernia) with a mean hernia diameter of 1.8cm (0.4-4.0) were treated with PCO-VP. One hundred subjects completed the two-year study. Cumulative hernia recurrence was 3.0% (3/101; 95%CI: 0.0-6.3%) within 24months. Median Numeric Rating Scale pain scores improved from 2 [0-10] at baseline to 0 [0-3] at 1 month (P<0.001) and remained low at 24months 0 [0-6] (P<0.001). 99% (102/103) of the patients were satisfied with their repair at 24months postoperative. Conclusions: The use of PCO-VP to repair primary umbilical and epigastric defects yielded a low recurrence rate, low postoperative and chronic pain, and high satisfaction ratings, confirming that PCO-VP is effective for small ventral hernia repair in the two-year term after implantation. Trial registration: The study was registered publically at clinicaltrials.gov (NCT01848184 registered May 7, 2013)

    Eukaryotic genome size databases

    Get PDF
    Three independent databases of eukaryotic genome size information have been launched or re-released in updated form since 2005: the Plant DNA C-values Database (), the Animal Genome Size Database () and the Fungal Genome Size Database (). In total, these databases provide freely accessible genome size data for >10 000 species of eukaryotes assembled from more than 50 years' worth of literature. Such data are of significant importance to the genomics and broader scientific community as fundamental features of genome structure, for genomics-based comparative biodiversity studies, and as direct estimators of the cost of complete sequencing programs

    A 3D mixed reality visualization of network topology and activity results in better dyadic cyber team communication and cyber situational awareness

    Get PDF
    BackgroundCyber defense decision-making during cyber threat situations is based on human-to-human communication aiming to establish a shared cyber situational awareness. Previous studies suggested that communication inefficiencies were among the biggest problems facing security operation center teams. There is a need for tools that allow for more efficient communication of cyber threat information between individuals both in education and during cyber threat situations.MethodsIn the present study, we compared how the visual representation of network topology and traffic in 3D mixed reality vs. 2D affected team performance in a sample of cyber cadets (N = 22) cooperating in dyads. Performance outcomes included network topology recognition, cyber situational awareness, confidence in judgements, experienced communication demands, observed verbal communication, and forced choice decision-making. The study utilized network data from the NATO CCDCOE 2022 Locked Shields cyber defense exercise.ResultsWe found that participants using the 3D mixed reality visualization had better cyber situational awareness than participants in the 2D group. The 3D mixed reality group was generally more confident in their judgments except when performing worse than the 2D group on the topology recognition task (which favored the 2D condition). Participants in the 3D mixed reality group experienced less communication demands, and performed more verbal communication aimed at establishing a shared mental model and less communications discussing task resolution. Better communication was associated with better cyber situational awareness. There were no differences in decision-making between the groups. This could be due to cohort effects such as formal training or the modest sample size.ConclusionThis is the first study comparing the effect of 3D mixed reality and 2D visualizations of network topology on dyadic cyber team communication and cyber situational awareness. Using 3D mixed reality visualizations resulted in better cyber situational awareness and team communication. The experiment should be repeated in a larger and more diverse sample to determine its potential effect on decision-making

    Layer dependent role of collagen recruitment during loading of the rat bladder wall

    Get PDF
    In this work, we re-evaluated long-standing conjectures as to the source of the exceptionally large compliance of the bladder wall. Whereas these conjectures were based on indirect measures of loading mechanisms, in this work we take advantage of advances in bioimaging to directly assess collagen fibers and wall architecture during biaxial loading. A custom biaxial mechanical testing system compatible with multiphoton microscopy was used to directly measure the layer-dependent collagen fiber recruitment in bladder tissue from 9 male Fischer rats (4 adult and 5 aged). As for other soft tissues, the bladder loading curve was exponential in shape and could be divided into toe, transition and high stress regimes. The relationship between collagen recruitment and loading curves was evaluated in the context of the inner (lamina propria) and outer (detrusor smooth muscle) layers. The large extensibility of the bladder was found to be possible due to folds in the wall (rugae) that provide a mechanism for low resistance flattening without any discernible recruitment of collagen fibers throughout the toe regime. For more extensible bladders, as the loading extended into the transition regime, a gradual coordinated recruitment of collagen fibers between the lamina propria layer and detrusor smooth muscle layer was found. A second important finding was that wall extensibility could be lost by premature recruitment of collagen in the outer wall that cut short the toe region. This change was correlated with age. This work provides, for the first time, a mechanistic understanding of the role of collagen recruitment in determining bladder extensibility and capacitance

    Tree migration-rates : narrowing the gap between inferred post-glacial rates and projected rates

    Get PDF
    Faster-than-expected post-glacial migration rates of trees have puzzled ecologists for a long time. In Europe, post-glacial migration is assumed to have started from the three southern European peninsulas (southern refugia), where large areas remained free of permafrost and ice at the peak of the last glaciation. However, increasing palaeobotanical evidence for the presence of isolated tree populations in more northerly microrefugia has started to change this perception. Here we use the Northern Eurasian Plant Macrofossil Database and palaeoecological literature to show that post-glacial migration rates for trees may have been substantially lower (60–260 m yr–1) than those estimated by assuming migration from southern refugia only (115–550 m yr–1), and that early-successional trees migrated faster than mid- and late-successional trees. Post-glacial migration rates are in good agreement with those recently projected for the future with a population dynamical forest succession and dispersal model, mainly for early-successional trees and under optimal conditions. Although migration estimates presented here may be conservative because of our assumption of uniform dispersal, tree migration-rates clearly need reconsideration. We suggest that small outlier populations may be a key factor in understanding past migration rates and in predicting potential future range-shifts. The importance of outlier populations in the past may have an analogy in the future, as many tree species have been planted beyond their natural ranges, with a more beneficial microclimate than their regional surroundings. Therefore, climate-change-induced range-shifts in the future might well be influenced by such microrefugia

    Preventing Falls in Older Californians: State of the Art

    Get PDF
    In February 2003, the Foundation convened over 150 leaders in academic, legislative, community-based services, consumer advocates, aging network, housing, public health, public safety, and other leaders who worked for two days on a statewide blueprint on fall prevention.  In preparation for the convening, a Preconference White Paper was created and used to build the blueprint.  The California Blueprint describes state-of-the-art approaches to reducing the risks of falls, and the challenges to implementing fall prevention in California.  One of the top recommendations from this blueprint was the creation of a coordination center that could serve as a statewide resource and lead efforts in fall prevention.  This recommendation eventually led to the creation of the Fall Prevention Center of Excellence (FPCE)

    The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria

    Get PDF
    Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel

    Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run

    Get PDF
    We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during LIGO's fifth science run and Virgo's first science run. We present noise spectral density curves for each of the four detectors that operated during these science runs which are representative of the typical performance achieved by the detectors for CBC searches. These spectra are intended for release to the public as a summary of detector performance for CBC searches during these science runs.Comment: 12 pages, 5 figure

    Directional limits on persistent gravitational waves using LIGO S5 science data

    Get PDF
    The gravitational-wave (GW) sky may include nearby pointlike sources as well as astrophysical and cosmological stochastic backgrounds. Since the relative strength and angular distribution of the many possible sources of GWs are not well constrained, searches for GW signals must be performed in a model-independent way. To that end we perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary extended sources. The latter result is the first of its kind. Finding no evidence to support the detection of GWs, we present 90% confidence level (CL) upper-limit maps of GW strain power with typical values between 2-20x10^-50 strain^2 Hz^-1 and 5-35x10^-49 strain^2 Hz^-1 sr^-1 for pointlike and extended sources respectively. The limits on pointlike sources constitute a factor of 30 improvement over the previous best limits. We also set 90% CL limits on the narrow-band root-mean-square GW strain from interesting targets including Sco X-1, SN1987A and the Galactic Center as low as ~7x10^-25 in the most sensitive frequency range near 160 Hz. These limits are the most constraining to date and constitute a factor of 5 improvement over the previous best limits.Comment: 10 pages, 4 figure

    Diverging climate trends in Mongolian taiga forests influence growth and regeneration of Larix sibirica

    Get PDF
    Central and semiarid north-eastern Asia was subject to twentieth century warming far above the global average. Since forests of this region occur at their drought limit, they are particularly vulnerable to climate change. We studied the regional variations of temperature and precipitation trends and their effects on tree growth and forest regeneration in Mongolia. Tree-ring series from more than 2,300 trees of Siberian larch (Larix sibirica) collected in four regions of Mongolia’s forest zone were analyzed and related to available weather data. Climate trends underlie a remarkable regional variation leading to contrasting responses of tree growth in taiga forests even within the same mountain system. Within a distance of a few hundred kilometers (140–490 km), areas with recently reduced growth and regeneration of larch alternated with regions where these parameters remained constant or even increased. Reduced productivity could be correlated with increasing summer temperatures and decreasing precipitation; improved growth conditions were found at increasing precipitation, but constant summer temperatures. An effect of increasing winter temperatures on tree-ring width or forest regeneration was not detectable. Since declines of productivity and regeneration are more widespread in the Mongolian taiga than the opposite trend, a net loss of forests is likely to occur in the future, as strong increases in temperature and regionally differing changes in precipitation are predicted for the twenty-first century
    corecore