478 research outputs found

    Inoculations with Arbuscular Mycorrhizal Fungi Increase Vegetable Yields and Decrease Phoxim Concentrations in Carrot and Green Onion and Their Soils

    Get PDF
    Background As one of the most widely used organophosphate insecticides in vegetable production, phoxim (C12H15N2O3PS) is often found as residues in crops and soils and thus poses a potential threat to public health and environment. Arbuscular mycorrhizal (AM) fungi may make a contribution to the decrease of organophosphate residues in crops and/or the degradation in soils, but such effects remain unknown. Methodology/Principal Findings A greenhouse pot experiment studied the influence of AM fungi and phoxim application on the growth of carrot and green onion, and phoxim concentrations in the two vegetables and their soil media. Treatments included three AM fungal inoculations with Glomus intraradices BEG 141, G. mosseae BEG 167, and a nonmycorrhizal control, and four phoxim application rates (0, 200, 400, 800 mg l−1, while 400 mg l−1 rate is the recommended dose in the vegetable production system). Carrot and green onion were grown in a greenhouse for 130 d and 150 d. Phoxim solution (100 ml) was poured into each pot around the roots 14d before plant harvest. Results showed that mycorrhizal colonization was higher than 70%, and phoxim application inhibited AM colonization on carrot but not on green onion. Compared with the nonmycorrhizal controls, both shoot and root fresh weights of these two vegetables were significantly increased by AM inoculations irrespective of phoxim application rates. Phoxim concentrations in shoots, roots and soils were increased with the increase of phoxim application rate, but significantly decreased by the AM inoculations. Soil phosphatase activity was enhanced by both AM inocula, but not affected by phoxim application rate. In general, G. intraradices BEG 141 had more pronounced effects than G. mosseae BEG 167 on the increase of fresh weight production in both carrot and green onion, and the decrease of phoxim concentrations in plants and soils. Conclusions/Significance Our results indicate a promising potential of AM fungi for enhancing vegetable production and reducing organophosphorus pesticide residues in plant tissues and their growth media, as well as for the phytoremediation of organophosphorus pesticide-contaminated soils

    The EBLM project. II. A very hot, low-mass M dwarf in an eccentric and long period eclipsing binary system from SuperWASP

    Get PDF
    In this paper, we derive the fundamental properties of 1SWASPJ011351.29+314909.7 (J0113+31), a metal-poor (-0.40 +/- 0.04 dex), eclipsing binary in an eccentric orbit (~0.3) with an orbital period of ~14.277 d. Eclipsing M dwarfs orbiting solar-type stars (EBLMs), like J0113+31, have been identified from WASP light curves and follow-up spectroscopy in the course of the transiting planet search. We present the first binary of the EBLM sample to be fully analysed, and thus, define here the methodology. The primary component with a mass of 0.945 +/- 0.045 Msun has a large radius (1.378 +/- 0.058 Rsun) indicating that the system is quite old, ~9.5 Gyr. The M-dwarf secondary mass of 0.186 +/- 0.010 Msun and radius of 0.209 +/- 0.011 Rsun are fully consistent with stellar evolutionary models. However, from the near-infrared secondary eclipse light curve, the M dwarf is found to have an effective temperature of 3922 +/- 42 K, which is ~600 K hotter than predicted by theoretical models. We discuss different scenarios to explain this temperature discrepancy. The case of J0113+31 for which we can measure mass, radius, temperature and metallicity, highlights the importance of deriving mass, radius and temperature as a function of metallicity for M dwarfs to better understand the lowest mass stars. The EBLM Project will define the relationship between mass, radius, temperature and metallicity for M dwarfs providing important empirical constraints at the bottom of the main sequence.Comment: 13 pages, 7 figures. Accepted for publication in A&

    The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad-Line Region

    Full text link
    We present models of the Hβ\beta-emitting broad-line region (BLR) in seven Seyfert 1 galaxies from the Lick AGN (Active Galactic Nucleus) Monitoring Project 2011 sample, drawing inferences on the BLR structure and dynamics as well as the mass of the central supermassive black hole. We find that the BLR is generally a thick disk, viewed close to face-on, with preferential emission back toward the ionizing source. The dynamics in our sample range from near-circular elliptical orbits to inflowing or outflowing trajectories. We measure black hole masses of log10(MBH/M)=6.480.18+0.21\log_{10}(M_{\rm BH}/M_\odot) = 6.48^{+0.21}_{-0.18} for PG 1310-108, 7.500.18+0.257.50^{+0.25}_{-0.18} for Mrk 50, 7.460.21+0.157.46^{+0.15}_{-0.21} for Mrk 141, 7.580.08+0.087.58^{+0.08}_{-0.08} for Mrk 279, 7.110.17+0.207.11^{+0.20}_{-0.17} for Mrk 1511, 6.650.15+0.276.65^{+0.27}_{-0.15} for NGC 4593, and 6.940.14+0.146.94^{+0.14}_{-0.14} for Zw 229-015. We use these black hole mass measurements along with cross-correlation time lags and line widths to recover the scale factor ff used in traditional reverberation mapping measurements. Combining our results with other studies that use this modeling technique, bringing our sample size to 16, we calculate a scale factor that can be used for measuring black hole masses in other reverberation mapping campaigns. When using the root-mean-square (rms) spectrum and using the line dispersion to measure the line width, we find log10(frms,σ)pred=0.57±0.19\log_{10}(f_{{\rm rms},\sigma})_{\rm pred} = 0.57 \pm 0.19. Finally, we search for correlations between ff and other AGN and BLR parameters and find marginal evidence that ff is correlated with MBHM_{\rm BH} and the BLR inclination angle, but no significant evidence of a correlation with the AGN luminosity or Eddington ratio.Comment: 26 pages, 14 figures. Accepted for publication in Ap

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production

    Dust Reverberation Mapping and Light-Curve Modelling of Zw229-015

    Full text link
    Multiwavelength variability studies of active galactic nuclei (AGN) can be used to probe their inner regions which are not directly resolvable. Dust reverberation mapping (DRM) estimates the size of the dust emitting region by measuring the delays between the infrared (IR) response to variability in the optical light curves. We measure DRM lags of Zw229-015 between optical ground-based and Kepler light curves and concurrent IR Spitzer 3.6 and 4.5 μ\mum light curves from 2010-2015, finding an overall mean rest-frame lag of 18.3 ±\pm 4.5 days. Each combination of optical and IR light curve returns lags that are consistent with each other within 1σ\sigma, which implies that the different wavelengths are dominated by the same hot dust emission. The lags measured for Zw229-015 are found to be consistently smaller than predictions using the lag-luminosity relationship. Also, the overall IR response to the optical emission actually depends on the geometry and structure of the dust emitting region as well, so we use Markov chain Monte Carlo (MCMC) modelling to simulate the dust distribution to further estimate these structural and geometrical properties. We find that a large increase in flux between the 2011-2012 observation seasons, which is more dramatic in the IR light curve, is not well simulated by a single dust component. When excluding this increase in flux, the modelling consistently suggests that the dust is distributed in an extended flat disk, and finds a mean inclination angle of 4913+3^{+3}_{-13} degrees.Comment: 32 pages, 32 Figures, 7 Tables; Accepted for publication in MNRA

    Dissecting the long-term emission behaviour of the BL Lac object Mrk 421

    Get PDF
    We report on long-term multiwavelengthmonitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007–2015, characterized by several extreme flares. The ratio between the optical, X-ray and γ -ray fluxes is very variable. The γ -ray flux variations show a fair correlation with the optical ones starting from 2012.We analyse spectropolarimetric data and find wavelengthdependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA.We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectral shape and suggest a shift of the synchrotron peak up to a factor of ∼50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight.http://10.0.4.69/mnras/stx2185Accepted manuscrip

    The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad Line Region in Mrk 50

    Get PDF
    We present dynamical modeling of the broad line region (BLR) in the Seyfert 1 galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN Monitoring Project (LAMP) 2011. We model the reverberation mapping data directly, constraining the geometry and kinematics of the BLR, as well as deriving a black hole mass estimate that does not depend on a normalizing factor or virial coefficient. We find that the geometry of the BLR in Mrk 50 is a nearly face-on thick disk, with a mean radius of 9.6(+1.2,-0.9) light days, a width of the BLR of 6.9(+1.2,-1.1) light days, and a disk opening angle of 25\pm10 degrees above the plane. We also constrain the inclination angle to be 9(+7,-5) degrees, close to face-on. Finally, the black hole mass of Mrk 50 is inferred to be log10(M(BH)/Msun) = 7.57(+0.44,-0.27). By comparison to the virial black hole mass estimate from traditional reverberation mapping analysis, we find the normalizing constant (virial coefficient) to be log10(f) = 0.78(+0.44,-0.27), consistent with the commonly adopted mean value of 0.74 based on aligning the M(BH)-{\sigma}* relation for AGN and quiescent galaxies. While our dynamical model includes the possibility of a net inflow or outflow in the BLR, we cannot distinguish between these two scenarios.Comment: Accepted for publication in ApJ. 8 pages, 6 figure

    The Lick AGN Monitoring Project 2011: Reverberation Mapping of Markarian 50

    Get PDF
    The Lick AGN Monitoring Project 2011 observing campaign was carried out over the course of 11 weeks in Spring 2011. Here we present the first results from this program, a measurement of the broad-line reverberation lag in the Seyfert 1 galaxy Mrk 50. Combining our data with supplemental observations obtained prior to the start of the main observing campaign, our dataset covers a total duration of 4.5 months. During this time, Mrk 50 was highly variable, exhibiting a maximum variability amplitude of a factor of 4 in the U-band continuum and a factor of 2 in the H-beta line. Using standard cross-correlation techniques, we find that H-beta and H-gamma lag the V-band continuum by tau_cen = 10.64(-0.93,+0.82) and 8.43(-1.28,+1.30) days, respectively, while the lag of He II 4686 is unresolved. The H-beta line exhibits a symmetric velocity-resolved reverberation signature with shorter lags in the high-velocity wings than in the line core, consistent with an origin in a broad-line region dominated by orbital motion rather than infall or outflow. Assuming a virial normalization factor of f=5.25, the virial estimate of the black hole mass is (3.2+-0.5)*10^7 solar masses. These observations demonstrate that Mrk 50 is among the most promising nearby active galaxies for detailed investigations of broad-line region structure and dynamics.Comment: Accepted for publication in ApJ Letters. 6 pages, 4 figure

    KELT-12b: A P ~ 5 day, Highly Inflated Hot Jupiter Transiting A Mildly Evolved Hot Star

    Get PDF
    We announce the discovery of KELT-12b, a highly inflated Jupiter-mass planet transiting the mildly evolved, V = 10.64 host star TYC 2619-1057-1. We followed up the initial transit signal in the KELT-North survey data with precise ground-based photometry, high-resolution spectroscopy, precise radial velocity measurements, and high-resolution adaptive optics imaging. Our preferred best-fit model indicates that the host star has = 6279 ± 51 K, = 3.89 ± 0.05,[Fe/H] = , = , and = 2.37 ± 0.17 . The planetary companion has = 0.95 ± 0.14 , = , = , and density = g cm −3 , making it one of the most inflated giant planets known. Furthermore, for future follow-up, we report a high-precision time of inferior conjunction in of 2,457,083.660459 ± 0.000894 and period of days. Despite the relatively large separation of ∼0.07 au implied by its ∼5.03-day orbital period, KELT-12b receives significant flux of erg s −1 cm −2 from its host. We compare the radii and insolations of transiting gas giant planets around hot ( K) and cool stars, noting that the observed paucity of known transiting giants around hot stars with low insolation is likely due to selection effects. We underscore the significance of long-term ground-based monitoring of hot stars and space-based targeting of hot stars with the Transiting Exoplanet Survey Satellite to search for inflated gas giants in longer-period orbits

    KELT-20b: A Giant Planet With A Period Of P ~ 3.5 Days Transiting The V ~ 7.6 Early A Star HD 185603

    Get PDF
    We report the discovery of KELT-20b, a hot Jupiter transiting a early A star, HD 185603, with an orbital period of days. Archival and follow-up photometry, Gaia parallax, radial velocities, Doppler tomography, and AO imaging were used to confirm the planetary nature of KELT-20b and characterize the system. From global modeling we infer that KELT-20 is a rapidly rotating ( ) A2V star with an effective temperature of K, mass of , radius of , surface gravity of , and age of . The planetary companion has a radius of , a semimajor axis of au, and a linear ephemeris of . We place a upper limit of on the mass of the planet. Doppler tomographic measurements indicate that the planetary orbit normal is well aligned with the projected spin axis of the star ( ). The inclination of the star is constrained to , implying a three-dimensional spin–orbit alignment of . KELT-20b receives an insolation flux of , implying an equilibrium temperature of of ∼2250 K, assuming zero albedo and complete heat redistribution. Due to the high stellar , KELT-20b also receives an ultraviolet (wavelength nm) insolation flux of , possibly indicating significant atmospheric ablation. Together with WASP-33, Kepler-13 A, HAT-P-57, KELT-17, and KELT-9, KELT-20 is the sixth A star host of a transiting giant planet, and the third-brightest host (in V ) of a transiting planet
    corecore