38 research outputs found

    Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    Get PDF
    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.Peer reviewe

    Insights into the primary radiation damage of silicon by a machine learning interatomic potential

    Get PDF
    We develop a silicon Gaussian approximation machine learning potential suitable for radiation effects, and use it for the first ab initio simulation of primary damage and evolution of collision cascades. The model reliability is confirmed by good reproduction of experimentally measured threshold displacement energies and sputtering yields. We find that clustering and recrystallization of radiation-induced defects, propagation pattern of cascades, and coordination defects in the heat spike phase show striking differences to the widely used analytical potentials. The results reveal that small defect clusters are predominant and show new defect structures such as a vacancy surrounded by three interstitials. Impact statement Quantum-mechanical level of accuracy in simulation of primary damage was achieved by a silicon machine learning potential. The results show quantitative and qualitative differences from the damage predicted by any previous models.Peer reviewe

    Segregation of Ni at early stages of radiation damage in NiCoFeCr solid solution alloys

    Get PDF
    Defect evolution under irradiation is investigated in a set of single-phase concentrated solid solution alloys (SP-CSAs) containing Ni with Co, Fe and/or Cr. We show that atomic segregation of Ni takes place already at very early stages of radiation damage in the 2-4 element SP-CSAs containing Fe or Cr, well below 1 dpa. We arrive at this conclusion by following the evolution of positron annihilation signals as a function of irradiation dose in single crystal samples, complemented by molecular dynamics simulations in the same model systems for high entropy alloys (HEAs). This manifestation of short-range order calls attention to composition fluctuations at the atomic level in irradiated HEAs. Ion irradiation may induce short-range order in certain alloys due to chemically biased elemental diffusion. The work highlights the necessity of updating the assumption of a totally random arrangement in the irradiated alloys, even though the alloys before irradiation have random arrangements of different chemical elements. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd.Peer reviewe

    Application of Proximal Alternating Linearized Minimization (PALM) and inertial PALM to dynamic 3D CT

    Get PDF
    The foot and ankle is a complex structure consisting of 28 bones and 30 joints that changes from being completely mobile when positioning the foot on the floor to a rigid closed pack position during propulsion such as when running or jumping. An understanding of this complex structure has largely been derived from cadaveric studies. In vivo studies have largely relied on skin surface markers and multi-camera systems that are unable to differentiate small motions between the bones of the foot. MRI and CT based studies have struggled to interpret functional weight bearing motion as imaging is largely static and non-load bearing. Arthritic diseases of the foot and ankle are treated either by fusion of the joints to remove motion, or joint replacement to retain motion. Until a better understanding of the biomechanics of these joints can be achieved

    Elongation mechanism of the ion shaping of embedded gold nanoparticles under swift heavy ion irradiation

    Get PDF
    The elongation process under swift heavy ion irradiation (74 MeV Kr ions) of gold NPs, with a diameter in the range 10-30 nm, and embedded in a silica matrix has been investigated by combining experiment and simulation techniques: three-dimensional thermal spike (3DTS), molecular dynamics (MD) and a phenomenological simulation code specially developed for this study. 3DTS simulations evidence the formation of a track in the host matrix and the melting of the NP after the passage of the impinging ion. MD simulations demonstrate that melted NPs have enough time to expand after each ion impact. Our phenomenological simulation relies on the expansion of the melted NP, which flows in the track in silica with modified (lower) density, followed by its recrystallization upon cooling. Finally, the elongation of the spherical NP into a cylindrical one, with a length proportional to its initial size and a width close to the diameter of the track, is the result of the superposition of the independent effects of each expansion/recrystallization process occurring for each ion impact. In agreement with experiment, the simulation shows the gradual elongation of spherical NPs in the ion-beam direction until their widths saturate in the steady state and reach a value close to the track diameter. Moreover, the simulations indicate that the expansion of the gold NP is incomplete at each ion impact.Peer reviewe

    Single and molecular ion irradiation-induced effects in GaN : experiment and cumulative MD simulations

    Get PDF
    An investigation of mechanisms of enhancement of irradiation-induced damage formation in GaN under molecular in comparison to monatomic ion bombardment is presented. Ion-implantation-induced effects in wurtzite GaN bombarded with 0.6 keV amu(-1) F, P, PF2, PF4, and Ag ions at room temperature are studied experimentally and by cumulative MD simulation in the correct irradiation conditions. In the low dose regime, damage formation is correlated with a reduction in photoluminescence decay time, whereas in the high dose regime, it is associated with the thickness of the amorphous/disordered layer formed at the sample surface. In all the cases studied, a shift to molecular ion irradiation from bombardment by its monatomic constituents enhances the damage accumulation rate. Implantation of a heavy Ag ion, having approximately the same mass as the PF4 molecule, is less effective in surface damage formation, but leads to noticeably higher damage accumulation in the bulk. The cumulative MD simulations do not reveal any significant difference in the total amount of both point defects and small defect clusters produced by light monatomic and molecular ions. On the other hand, increased production of large defect clusters by molecular PF4 ions is clearly seen in the vicinity of the surface. Ag ions produce almost the same number of small, but more large defect clusters compared to the others. These findings show that the higher probability of formation of large defect clusters is important mechanism of the enhancement of stable damage formation in GaN under molecular, as well as under heavy monatomic ion irradiation.Peer reviewe

    Clinical Application of Low-dose Calcium Regulating Neural Inhibitor in Related Renal Transplantation

    Get PDF
    摘要 目的探讨低剂量钙调节神经素抑制剂在亲属活体肾脏移植中的安全性与效果。 方法回顾性总结厦门大学附属东南医院亲属活体肾脏移植患者122例:其中除4例为夫妻间供肾移植外其余均为血缘亲属关系供肾。人类白细胞抗原(HLA)全配7例,1个抗原错配20例,2个抗原错配23例,3个抗原错配72例。血型相同者91例,相容者31例。122例供者均经开放式手术取肾,供者取左肾105例,取右肾17例。术后均采用环孢素A(CsA)或他克莫司(TAC)、霉酚酸酯(MMF)及皮质激素(Pred)经典三联免疫抑制剂方案治疗,其中环孢素A方案71例,他克莫司方案51例。根据术后免疫抑制方案中钙调节免疫抑制剂(CNIs...Abstract Aim: Discusses the safety and effection of low-dose calcineurin inhibitors (CNIs) used in living relative donor kidney transplantation. Methods: One hundred and twenty-two patients with living relative donor kidney transplantation in Southeast Hospital Affiliated to Xiamen University were enrolled in this retrospective study. Expect for 4 patients donated by their spouses, the others h...学位:医学硕士院系专业:医学院临床医学系_外科学学号:2452009115299

    Investigation on different materials after pulsed high field conditioning and low-energy H- irradiation

    Get PDF
    During operation, the radio-frequency quadrupole (RFQ) of the LINAC4 at CERN is exposed to high electric fields, which can lead to vacuum breakdown. It is also subject to beam loss, which can cause surface modification, including blistering, which can result in reduced electric field holding and an increased breakdown rate. First, experiments to study the high-voltage conditioning process and electrical breakdown statistics have been conducted using pulsed high-voltage DC systems in order to identify materials with high electric field handling capability and robustness to low-energy irradiation. In this paper, we discuss the results obtained for the different materials tested. To complement these, an investigation of their metallurgical properties using advanced microscopic techniques was done to observe and characterize the different materials and to compare results before and after irradiation and breakdown testing

    Silicon and Germanium Nanostructures for Photovoltaic Applications: Ab-Initio Results

    Get PDF
    Actually, most of the electric energy is being produced by fossil fuels and great is the search for viable alternatives. The most appealing and promising technology is photovoltaics. It will become truly mainstream when its cost will be comparable to other energy sources. One way is to significantly enhance device efficiencies, for example by increasing the number of band gaps in multijunction solar cells or by favoring charge separation in the devices. This can be done by using cells based on nanostructured semiconductors. In this paper, we will present ab-initio results of the structural, electronic and optical properties of (1) silicon and germanium nanoparticles embedded in wide band gap materials and (2) mixed silicon-germanium nanowires. We show that theory can help in understanding the microscopic processes important for devices performances. In particular, we calculated for embedded Si and Ge nanoparticles the dependence of the absorption threshold on size and oxidation, the role of crystallinity and, in some cases, the recombination rates, and we demonstrated that in the case of mixed nanowires, those with a clear interface between Si and Ge show not only a reduced quantum confinement effect but display also a natural geometrical separation between electron and hole

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    corecore