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interatomic potential
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ABSTRACT
We develop a silicon Gaussian approximation machine learning potential suitable for radiation
effects, and use it for the first ab initio simulation of primary damage and evolution of collision
cascades. The model reliability is confirmed by good reproduction of experimentally measured
threshold displacement energies and sputtering yields. We find that clustering and recrystallization
of radiation-induced defects, propagation pattern of cascades, and coordination defects in the heat
spike phase show striking differences to the widely used analytical potentials. The results reveal that
small defect clusters are predominant and shownewdefect structures such as a vacancy surrounded
by three interstitials.

IMPACT STATEMENT
Quantum-mechanical level of accuracy in simulation of primary damage was achieved by a sili-
con machine learning potential. The results show quantitative and qualitative differences from the
damage predicted by any previous models.
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The interaction of the energetic particles with matter
and quantification of the displacement damage produced
following atomic collision cascades are of crucial impor-
tance in advanced technologies such as semiconductor
processing and nuclear power generation. Primary dam-
age, defined as the defects that are produced immediately
after particle impact, is the initial stage that needs to be
understood to be able to model permanent damage in
materials [1,2]. The extremely fast and far from thermo-
dynamic equilibrium nature of the processes occurring
at this stage makes experimental study of it unachiev-
able. Although density functional theory (DFT) could
in principal provide a first-principle image of the evo-
lution and interaction of defects in collision cascades,
the time and length scale limits of this method restrict
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its applicability to very small impact energies and rele-
vant basic properties [3–6]. Classical molecular dynam-
ics (MD) simulations have been the dominant approach
in radiation damage analysis in past decades, with a
key role in enlightening the fundamental physics of pri-
mary damage processes. Nevertheless, the reliability of
the results from MD simulations has always been in the
shadow of the accuracy of the selected interatomic poten-
tial and simplifications introduced by its functional form.
Machine learning (ML) potentials, as a novel framework
in the development of interatomic potentials, offer an
alternative approach for the representation of the poten-
tial energy surface by learning its topology from large
configuration data sets obtained from DFT calculations.
This is done bymeans ofmathematical descriptors which

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21663831.2020.1771451&domain=pdf&date_stamp=2020-06-08
http://orcid.org/0000-0001-6456-6482
http://orcid.org/0000-0002-4898-6150
http://orcid.org/0000-0002-5828-200X
http://orcid.org/0000-0002-9403-4206
http://orcid.org/0000-0002-9330-5692
http://orcid.org/0000-0001-6244-1942
mailto:a_hamedani@sbu.ac.ir
mailto:ali.hamedani.fme@gmail.com
https://doi.org/10.1080/21663831.2020.1771451
http://creativecommons.org/licenses/by/4.0/


MATER. RES. LETT. 365

encode the information of the local atomic environments,
to be retrieved and interpolated for newly encountered
configurations during MD implementations [7,8]. This
brings MD simulations of systems containing thousands
of atoms with DFT accuracy into reality [9–27]. Recently,
an ML interatomic potential was developed for Si based
on the Gaussian approximation potential (GAP) frame-
work [28]. This potential describes properties of liquid
and amorphous phases as well as point defects, which are
very important in simulation of radiation damage, with
DFT accuracy [28]. This level of accuracy far exceeds
that of any classical semi-empirical potentials, and in
principle opens up a new avenue for MD simulations
of radiation damage with quantum mechanics precision
level. However, this potential as published does not have
any realistic descriptions of short-range (�1.6Å) inter-
actions, making it unsuitable for radiation effects simula-
tions.

In this Letter, we augment the GAP with a realis-
tic repulsive potential to enable large-scale DFT-accurate
simulations of dynamic evolution of particle-induced
collision cascades. We show that the modified GAP
accurately reproduces experimental sputtering yields and
threshold displacement energies (TDE). Good repro-
duction of TDEs is very important for many advanced
applications, such as a detection possibility of the dark
matterweakly interactingmassive particles [29]. In nano-
electronics, where the interaction of the low-energy
implanted dopants with the defect clusters becomes an
obstacle (as a source of diffusion and activation anoma-
lies) to reach desired component design, a precise model
of the evolution and form of the surviving defects would
lead to a better understanding of the dopant-defect inter-
actions and more realistic treatment of this phenomenon
[30–33].

Short-range interactions in our cascade simulations
are described by the all-electron DFT repulsive poten-
tial, DMol [34], which is smoothly joined to the original
GAP potential, while making sure that it has no effect
on the original structures in the training data set. The
DFT-DMol calculations were exclusively optimized for
the high-energy repulsive part and their excellent agree-
ment with experiments was recently confirmed [35]. The
total energy of a system containing N atoms is

Etot =
N∑

i<j
Vpair(rij) +

N∑

i
EGAP(hi)

=
N∑

i<j
Vpair(rij) +

N∑

i

M∑

s
αsK(hi, hs) (1)

whereVpair is the repulsive pair potential given by a cubic
spline fitted to the DMol data. The second term which

Table 1. Threshold displacement energies in eV calculated at 30
K based on themethod introduced in Ref. [38]. The kinetic energy
resolution was 1.0 eV. DFT calculations in Ref. [5] have been con-
ductedwith both GGA and LDA exchange-correlation functionals.
Results from the GGA functional are presented.

Direction GAP T3 SW DFTa Experiment

〈100〉 20.5 ± 0.5 10.0 ± 0.5 23.5 ± 0.5 19.5 ± 1.5 21.0 ± 2.0b

〈111〉 14.5 ± 0.5 14.0 ± 0.5 20.5 ± 0.5 14.5 ± 1.5
〈1̄1̄1̄〉 12.5 ± 0.5 11.5 ± 0.5 17.5 ± 0.5 12.5 ± 1.5 12.9 ± 0.6c

aRef. [5]
bRef. [39]
cRef. [40]

takes care of the many-body interactions is a sum over
kernel functions that measure the resemblance between
the unknown atomic environment i and M representa-
tive, trained environments s, encoded by the descriptor
h. The α is the vector of learning coefficients obtained
by solving a regularized least squares problem [28,36,37].
In accordance with this, we calculated TDE values with
theGAP in low-index directions according to themethod
described in Ref. [38] at 30K. This initial thermalization
sets atoms into the randommotion, creating more realis-
tic collision probability between the lattice atoms and the
atom in motion. Table 1 provides a comparison of TDE
values by GAP and the classical Stillinger–Weber (SW)
[41] and Tersoff III (T3) [42] potentials alongside those
calculated by DFT [5] and obtained in experiments. The
GAP-predicted TDE values in both the 〈100〉 and 〈111〉
directions are in perfect agreement with DFT and exper-
iments. While SW noticeably overestimates the TDE in
all directions, T3 shows a considerable discrepancy only
in the 〈100〉 direction. The global minimum calculated
by GAP is in excellent agreement with DFT and exper-
iments, whereas the predictions of SW and T3 clearly
disagree with experiments. This validates our augmen-
tation of the repulsive potential and the way that GAP
deals with short-range interactions and defect generation
in collision cascades.

We further tested the GAP with single Ar ion implan-
tation simulations. In sputtering simulations, not just a
gooddescription of the crystalline, liquid and amorphous
phases are important, but also a realistic modeling of the
surface binding energy. We simulated 0.1, 0.2, 0.5 and
1.0 keV Ar implantation in Si (see supplemental material
for simulation details). Figure 1 shows the acquired sput-
tering yields with GAP in comparison with SW, T3 and
experimental yields [43–48]. It also contains the results
obtained by Primary-GAP, which is the original poten-
tial without our augmented repulsive potential. The clear
disagreement of Primary GAP with experiments empha-
sizes the importance of repulsive response of the potential
and its implementation. Although the predictions of all
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Figure 1. Sputtering yields from simulated single implantation of 0.1, 0.2, 0.5 and 1.0 keV Ar ions in silicon compared to the experimen-
tal measurements. Primary-GAP is the machine learning potential before augmentation of the repulsive part. Each point represents an
average of 130 simulations. Yamamura data [43] is a fit to 12 different implantation experiments. To guide the eye, the same function
used in Ref. [43] has been fitted to the simulated yields.

Figure 2. Left: Time-dependent number of interstitial and coordination defects in silicon, generated during collision cascades initiated
by a 2 keV PKA. Number of interstitial defects were obtained by Wigner–Seitz analysis. Number of coordination defects represents the
total number of dangling and floating bonds within rc = 2.75Å. Right: The new defect structure observed in the simulations, from two
different views. It contains one vacancy surrounded by three interstitials (black).

potentials are lower than experimental values, they repro-
duce the energy dependence of the sputtering yield cor-
rectly.However,GAPgives the closest agreementwith the
experiment.

We studied the defect production and clustering of
radiation-induced defects by carrying out cascade simu-
lations for 0.1, 0.2, 0.4, 1.0 and 2.0 keV primary knock-on
atom (PKA) energies at 300K (see supplemental mate-
rial for simulation details). The number of final defects
is one of the most important measures in quantifying
the extent of irradiation effects in matter. Regarding
Si, a question was opened up in Ref. [49] about the
actual number of energy-dependent surviving defects
upon irradiation. It was shown that the difference in
final number of defects between SW and T3, the two

most common interatomic potentials in damage anal-
ysis of Si, is a factor of 2. As discussed in Ref. [49],
this stems from the different functional form of these
potentials, which leads to different recrystallization and
crystal recovery of the complex configurations gener-
ated in the heat spike phase. Figure 2 presents the num-
ber of interstitial and coordination defects generated
in 2 keV PKA simulations up to 6 ps, after which the
system has cooled down to 300K. The results using
GAP reveals that the number of surviving defects is
almost the same as in SW, while T3 produces approxi-
mately two times more defects. This resolves the above-
mentioned long-standing debate and supports the pre-
diction of SWregarding the number of radiation-induced
defects.
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Although the final number of defects is almost the
same inGAP and SW, the number of coordination defects
and recrystallization of the molten region in the heat
spike phase in GAP are clearly different. For instance,
in 2.0 keV PKA simulations, GAP shows around 1.5
times more coordination defects than SW and T3 in the
heat spike. Moreover, recrystallization is more efficient in
GAP as it shows recovery from higher number of coordi-
nation defects to the same level of coordination defects
in SW during almost the same time span (from maxi-
mum heat spike to the equilibrium state). This is related
to the different nature of classical and ML potentials.
Instead of a fixed, simple functional form, GAP which
has been extensively trained to the DFT-calculated liquid
and amorphous configurations, treats the molten region
in the heat spike and subsequent amorphous regions
based on the constructed potential energy surface and
a realistic description of these phases can be expected.
To endorse this, we refer to Ref. [28] where the structure
of liquid and amorphous Si was extensively examined by
GAPand comparedwith analytical potentials. The results
showed that GAP has the best agreement with DFT and
experiments in characterizing both phases.

Clustering of radiation-induced defects and their size
distribution are crucial factors in specifying microstruc-
tural evolution of material under irradiation. The size
and separation of clusters determine their life time and
the strength of their elastic interactions. Hence, the size
distribution of initially generated clusters is a critical
item for cluster dynamics or rate theory models [50].
Figure 3 presents cluster analysis of defects generated
in 2 keV PKA simulations, averaged over the 20 simula-
tions. A defect cluster is defined as a set of neighboring
Wigner–Seitz defects; neighbors being defects located
within a range up to the rc = 10.8Å [49]. Although iso-
lated defects and small clusters are the dominant forms
of surviving defects in all potentials, GAP predicts on
average 3 times more isolated defects, and the fraction

Figure 3. Size distribution of defect clusters produced in cas-
cades initiated by a 2 keV PKA.

of small-sized clusters containing 2–10 defects is a factor
of 3 and 5 higher compared to the SW and T3 potentials,
respectively. On the contrary, the fraction of large clusters
containing a major portion of total defects is noticeably
lower in GAP. This trend is also true for lower PKA ener-
gies, where T3 favors large clustering of defects, followed
by SWwhichwith a steady decline produces intermediate
sizes as well. The different cluster distributions will sub-
stantially affect the long-term evolution of the damage.
Unlike defect clusters, isolated defects are highly mobile
and can easily recombine, leaving no damage behind
[51–54].

The different clustering behavior can be attributed to
another different feature of GAP in cascade simulations;
the pattern in which cascades evolve. In the classical
potentials, cascades are more compact with collisions
confined within pockets, producing dense and localized
clustering of the damage. On the contrary, cascades in the
GAP spread across a broader spatial range, leaving more
isolated defects and covering a larger volume. In other
words, more atoms are involved in the distribution of the
injected energy by the PKA in the GAP, while the dis-
sipation of energy is concentrated locally in the classical
potentials tomake larger clusters of displaced atoms. This
is shown in Figure 4, where the time evolution of repre-
sentative 2 keV PKA cascades up to the heat spike phase
are illustrated for each of the three potentials. The ini-
tial cascade splits into two sub-cascades in the GAP and
SW. The different form of cascade propagation between
GAP, SW and T3 is clearly visible. Figure 4 also shows the
different clustering of the remaining defects in the equi-
librium state of the system at 300K after quenching of
cascades and recovery of the displaced atoms as discussed
above.

Small defect clusters can play a key role in captur-
ing impurities and self-interstitials in silicon [55]. GAP
shows a cluster of four defects in which a vacancy is
surrounded by three interstitials, shown in Figure 2. We
found this defect structure three times in our simulations
with GAP and just once in SW simulations. Among the
three occurrences in GAP, one was found in the 0.4 keV
PKA simulations and the other two in the 2 keV sim-
ulations. For SW we found this cluster in 1 keV PKA
simulations.We conjecture that the creation of this defect
structure is energy dependent, such that the probability
increases with the increase of PKA energy. In one case,
the interstitials are symmetrically located around the
vacancy. To examine the stability of this defect, we cooled
down all cases to 0K. In one case in the GAP, the central
vacancy recombined with one of the surrounding inter-
stitials, but in the other three cases the defect remained
as a whole. The stability of the defect can be under-
stood based on coordination analysis of the atoms around
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Figure 4. Snapshots of 2 keV PKA collision cascades at the heat spike phase and resultant defects in silicon. Heat spike snapshots (left
panel) present the atoms with kinetic energy above 1 eV. Atoms have been color-coded based on the time of generation after firing the
PKA. Surviving defects (right panel) are acquired from Wigner–Seitz analysis of the cell after it cools down to the ambient temperature
of 300 K.

the vacancy. In cases where the defect remains stable,
the atoms surrounding the vacant position, including the
interstitial atoms, all have fourfold coordination (which
is the equilibrium coordination number in Si). However,
in the case where the interstitial recombined with the
vacancy, two of the interstitials had a coordination num-
ber of 3. We also checked the stability of the cluster with
DFT. We tested 64- and 216-atom boxes with the PBE
GGA [56] exchange correlation functional. The cluster
remains stable upon relaxing down to the residual forces
of 0.01 eV/Å on atoms.

In order to quantitatively examine the clustering
behavior, we compare the sizes of the clusters gener-
ated in our simulations with those measured by Howe
et al. [57,58] in implantation experiments. They used
transmission electron microscopy (TEM) to analyse fea-
tures of collision cascades in silicon by directly observing

and characterizing damaged regions created during
implantation of various ions (P, As, Sb, Bi) in a wide
range of implantation energies. The experiments were
conducted at 40–50K, under low fluences to avoid cas-
cade overlapping.We performed binary collision approx-
imation calculations using srim [59] for all of these
implanted ions, calculating the distance between initial
point of sub-cascades derived by recoils with energies
higher than 500 eV. For heavy ions like 80 keV Bi, with an
average cascade-created damage size of 50Å, the average
distance between sub-cascades is 15Å, which is directly
signaling overlap of sub-cascades created by Si recoils in
the substrate. On the contrary, in the case of P ions, where
damaged regions by cascades have an average diameter
of 18Å, the sub-cascades are initiated 58Å apart from
each other. This is in line with the conclusion from
experiments that P ion implantation is very inefficient
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in creating sub-cascades as they have lowest observ-
able damaged regions among the studied ions. Hence,
we compare our results with P implantation, where no
cascade overlap takes place. Our simulations are repre-
sentative of the cascades initiated by 0.1, 0.2, 0.4, 1.0
and 2.0 keV Si recoils (our studied PKA energies) in P
implantation.

In Figure 5, we present statistics of the average diame-
ter of defect clusters derived from 0.2, 0.4, 1.0 and 2.0 keV
PKA simulations.Clusters with average diameter above
10Å are called visible [60]. Considering the recoil-energy
distribution of 60 keVP in Si (obtained fromSRIMcalcu-
lations) as conducted in the experiments, we calculated
the weighted-average diameter of the visible clusters, d̄,
generated from the above-mentioned PKA events for
each potential. 0.1 keV PKAs do not create clusters in
the visible region. The weight corresponding to a cer-
tain PKA energy, EPKA, was calculated based on the ratio
of the number of the produced recoils with EPKA. The
weighted-average diameter for each potential then is d̄ =
1/N

∑
EPKA

∫ Eu
El n(E)d(EPKA)dE [61]. El and Eu are lower

and upper limits of the interval that givenEPKA resides in,
respectively. n(E) is the normalization factor, the num-
ber of recoils per ion per energy, d(EPKA) is the average
diameter of the clusters in the given EPKA, and N is the
total number of recoils produced by all EPKAs. Figure 5
includes these values alongside the measured average
from Ref. [57] which amounts to 18 ± 1.4Å for 60 keV P
implantation. Since defects in TEM are imaged through
their strain fields [62,63], the experimentally measured
cluster sizes are larger than in direct visualization of MD
results. We analyzed the effective atomic strain of the
defected cells in our simulations, being approximately

Figure 5. Statistics of the averagediameter of defect clusters pro-
duced in collision cascades derived by 0.2, 0.4, 1.0 and 2.0 keV
PKAs. Weighted-average diameters of the visible clusters, d̄, for
each potential is compared with the reported values in the
implantation experiments [57]. The diameter of the clusters from
simulationswas calculated by averagingmaximumandminimum
linear dimensions of the clusters in the 〈111〉 plane, as it was the
target plane in the experiments.

equal to the second nearest neighbor distance in silicon
lattice (3.84Å). Hence we add 3.84Å to our calculated
averages from the simulations to allow a fair compari-
son. We address the presented statistics from two view
points. First, by considering the overall weighted aver-
age of each potential. GAP with 20.9 ± 0.8Å gives the
closest value to the experimental value of 18.0 ± 1.4Å,
followed by SW with 23.29 ± 0.8Å and T3 with 34.0 ±
1.3Å, where the uncertainties in our calculations are the
weighted standard errors. Second, by taking into account
the size distribution of visible clusters generated by the
different potentials. Although all of the potentials create
clusters larger than the experimental average, the size of
the largest cluster in GAP, produced in the highest PKA
energy (2 keV), is smaller than in SW and T3. The dom-
inance of small defect clusters agrees with diffuse X-ray
scattering experiments which indicated that small defect
clusters dominate damage by 4.5 keV He and 20 keV Ga
ions in Si at 100K [51]. The importance of the high
ratio of small clusters is also highlighted by them being
able to explain the electrical type inversion in Si-based
detectors [64].

In conclusion, we have reported the first large-
scale simulation of irradiation-induced damage and ion
implantation with DFT accuracy. We use a machine
learning interatomic potential for silicon, GAP, trained
over a massive data set of DFT calculations to achieve
this goal. Reproducing experimental threshold displace-
ment energies and sputtering yields of Ar implantation,
assure us of GAP’s performance and reliability in cas-
cade simulations. Clustering of the defects is different in
the GAP compared to the classical potentials. Different
clustering can be ascribed to the different propagation
pattern of the cascades in GAP, as it shows spread-out
form of the cascade evolution compared to the compact
propagation in the classical potentials. We also encoun-
tered a new defect structure, a vacancy surrounded by
three interstitials. Moreover, GAP reveals a large frac-
tion of coordination defects in the heat spike phase and
more efficient recrystallization of the defects in the post-
cascade phase. Overall, the key difference between the
classical potentials and GAP is that the number of iso-
lated and small defect clusters in GAP are considerably
higher than that of large clusters.
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