406 research outputs found
Predicted multiply-imaged X-ray AGNs in the XXL survey
We estimate the incidence of multiply-imaged AGNs among the optical
counterparts of X-ray selected point-like sources in the XXL field. We also
derive the expected statistical properties of this sample, such as the redshift
distribution of the lensed sources and of the deflectors that lead to the
formation of multiple images, modelling the deflectors using both spherical
(SIS) and ellipsoidal (SIE) singular isothermal mass distributions. We further
assume that the XXL survey sample has the same overall properties as the
smaller XMM-COSMOS sample restricted to the same flux limits and taking into
account the detection probability of the XXL survey. Among the X-ray sources
with a flux in the [0.5-2] keV band larger than 3.0x10 erg cm
s and with optical counterparts brighter than an r-band magnitude of 25,
we expect ~20 multiply-imaged sources. Out of these, ~16 should be detected if
the search is made among the seeing-limited images of the X-ray AGN optical
counterparts and only one of them should be composed of more than two lensed
images. Finally, we study the impact of the cosmological model on the expected
fraction of lensed sources.Comment: 15 pages, 7 figures, 1 table, accepted for publication in MNRA
Search for gravitational lens candidates in the XMM-LSS/CFHTLS common field
Our aim was to identify gravitational lens candidates among some 5500 optical
counterparts of the X-ray point-like sources in the medium-deep ~11 sq. deg.
XMM-LSS survey. We have visually inspected the optical counterparts of each
QSOs/AGN using CFHTLS T006 images. We have selected compact pairs and groups of
sources which could be multiply imaged QSO/AGN. We have measured the colors and
characterized the morphological types of the selected sources using the
multiple PSF fitting technique. We found three good gravitational lens
candidates: J021511.4-034306, J022234.3-031616 and J022607.0-040301 which
consist of pairs of point-like sources having similar colors. On the basis of a
color-color diagram and X-ray properties we could verify that all these sources
are good QSO/AGN candidates rather than stars. Additional secondary
gravitational lens candidates are also reported.Comment: 6 pages, 3 figures, 1 table, Accepted for publication in MNRA
A multi-photon Stokes-parameter invariant for entangled states
We consider the Minkowskian norm of the n-photon Stokes tensor, a scalar
invariant under the group realized by the transformations of stochastic local
quantum operations and classical communications (SLOCC). This invariant is
offered as a candidate entanglement measure for n-qubit states and discussed in
relation to measures of quantum state entanglement for certain important
classes of two-qubit and three-qubit systems. This invariant can be directly
estimated via a quantum network, obviating the need to perform laborious
quantum state tomography. We also show that this invariant directly captures
the extent of entanglement purification due to SLOCC filters.Comment: 9 pages, 0 figures, Accepted for publication in Physical Review
High-precision photometry by telescope defocussing. III. The transiting planetary system WASP-2
We present high-precision photometry of three transits of the extrasolar
planetary system WASP-2, obtained by defocussing the telescope, and achieving
point-to-point scatters of between 0.42 and 0.73 mmag. These data are modelled
using the JKTEBOP code, and taking into account the light from the
recently-discovered faint star close to the system. The physical properties of
the WASP-2 system are derived using tabulated predictions from five different
sets of stellar evolutionary models, allowing both statistical and systematic
errorbars to be specified. We find the mass and radius of the planet to be M_b
= 0.847 +/- 0.038 +/- 0.024 Mjup and R_b = 1.044 +/- 0.029 +/- 0.015 Rjup. It
has a low equilibrium temperature of 1280 +/- 21 K, in agreement with a recent
finding that it does not have an atmospheric temperature inversion. The first
of our transit datasets has a scatter of only 0.42 mmag with respect to the
best-fitting light curve model, which to our knowledge is a record for
ground-based observations of a transiting extrasolar planet.Comment: Accepted for publication in MNRAS. 9 pages, 3 figures, 10 table
The Transiting System GJ1214: High-Precision Defocused Transit Observations and a Search for Evidence of Transit Timing Variation
Aims: We present 11 high-precision photometric transit observations of the
transiting super-Earth planet GJ1214b. Combining these data with observations
from other authors, we investigate the ephemeris for possible signs of transit
timing variations (TTVs) using a Bayesian approach.
Methods: The observations were obtained using telescope-defocusing
techniques, and achieve a high precision with random errors in the photometry
as low as 1mmag per point. To investigate the possibility of TTVs in the light
curve, we calculate the overall probability of a TTV signal using Bayesian
methods.
Results: The observations are used to determine the photometric parameters
and the physical properties of the GJ1214 system. Our results are in good
agreement with published values. Individual times of mid-transit are measured
with uncertainties as low as 10s, allowing us to reduce the uncertainty in the
orbital period by a factor of two.
Conclusions: A Bayesian analysis reveals that it is highly improbable that
the observed transit times is explained by TTV, when compared with the simpler
alternative of a linear ephemeris.Comment: Submitted to A&
OGLE-2009-BLG-092/MOA-2009-BLG-137: A Dramatic Repeating Event With the Second Perturbation Predicted by Real-Time Analysis
We report the result of the analysis of a dramatic repeating gravitational
microlensing event OGLE-2009-BLG-092/MOA-2009-BLG-137, for which the light
curve is characterized by two distinct peaks with perturbations near both
peaks. We find that the event is produced by the passage of the source
trajectory over the central perturbation regions associated with the individual
components of a wide-separation binary. The event is special in the sense that
the second perturbation, occurring days after the first, was
predicted by the real-time analysis conducted after the first peak,
demonstrating that real-time modeling can be routinely done for binary and
planetary events. With the data obtained from follow-up observations covering
the second peak, we are able to uniquely determine the physical parameters of
the lens system. We find that the event occurred on a bulge clump giant and it
was produced by a binary lens composed of a K and M-type main-sequence stars.
The estimated masses of the binary components are
and , respectively, and they are separated in
projection by . The measured distance to the
lens is . We also detect the orbital motion
of the lens system.Comment: 18 pages, 5 figures, 1 tabl
MOA-2009-BLG-387Lb: A massive planet orbiting an M dwarf
We report the discovery of a planet with a high planet-to-star mass ratio in
the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations
over a 12-day interval, one of the longest for any planetary event. The host is
an M dwarf, with a mass in the range 0.07 M_sun < M_host < 0.49M_sun at 90%
confidence. The planet-star mass ratio q = 0.0132 +- 0.003 has been measured
extremely well, so at the best-estimated host mass, the planet mass is m_p =
2.6 Jupiter masses for the median host mass, M = 0.19 M_sun. The host mass is
determined from two "higher order" microlensing parameters. One of these, the
angular Einstein radius \theta_E = 0.31 +- 0.03 mas, is very well measured, but
the other (the microlens parallax \pi_E, which is due to the Earth's orbital
motion) is highly degenate with the orbital motion of the planet. We
statistically resolve the degeneracy between Earth and planet orbital effects
by imposing priors from a Galactic model that specifies the positions and
velocities of lenses and sources and a Kepler model of orbits. The 90%
confidence intervals for the distance, semi-major axis, and period of the
planet are 3.5 kpc < D_L < 7.9 kpc, 1.1 AU < a < 2.7AU, and 3.8 yr < P < 7.6
yr, respectively.Comment: 20 pages including 8 figures. A&A 529 102 (2011
High-precision photometry by telescope defocussing - VI. WASP-24, WASP-25 and WASP-26
The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013/) under grant agreement nos. 229517 and 268421. This publication was supported by grants NPRP 09-476-1-078 and NPRP X-019-1-006 from Qatar National Research Fund (a member of Qatar Foundation). TCH acknowledges financial support from the Korea Research Council for Fundamental Science and Technology (KRCF) through the Young Research Scientist Fellowship Programme and is supported by the KASI (Korea Astronomy and Space Science Institute) grant 2012-1-410-02/2013-9-400-00. SG, XW and XF acknowledge the support from NSFC under the grant no. 10873031. The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (grant agreement no. 267864). DR, YD, AE, FF (ARC), OW (FNRS research fellow) and J Surdej acknowledge support from the Communauté française de Belgique – Actions de recherche concertées – Académie Wallonie-Europe.We present time series photometric observations of 13 transits in the planetary systems WASP-24, WASP-25 and WASP-26. All three systems have orbital obliquity measurements, WASP-24 and WASP-26 have been observed with Spitzer, and WASP-25 was previously comparatively neglected. Our light curves were obtained using the telescope-defocussing method and have scatters of 0.5–1.2 mmag relative to their best-fitting geometric models. We use these data to measure the physical properties and orbital ephemerides of the systems to high precision, finding that our improved measurements are in good agreement with previous studies. High-resolution Lucky Imaging observations of all three targets show no evidence for faint stars close enough to contaminate our photometry. We confirm the eclipsing nature of the star closest to WASP-24 and present the detection of a detached eclipsing binary within 4.25 arcmin of WASP-26.Publisher PDFPeer reviewe
The Hyper Suprime-Cam SSP Survey: Overview and Survey Design
Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of
the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of
scientists from Japan, Taiwan and Princeton University is using HSC to carry
out a 300-night multi-band imaging survey of the high-latitude sky. The survey
includes three layers: the Wide layer will cover 1400 deg in five broad
bands (), with a point-source depth of . The
Deep layer covers a total of 26~deg in four fields, going roughly a
magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter
still in two pointings of HSC (a total of 3.5 deg). Here we describe the
instrument, the science goals of the survey, and the survey strategy and data
processing. This paper serves as an introduction to a special issue of the
Publications of the Astronomical Society of Japan, which includes a large
number of technical and scientific papers describing results from the early
phases of this survey.Comment: 14 pages, 7 figures, 5 tables. Corrected for a typo in the
coordinates of HSC-Wide spring equatorial field in Table
- …
