5,216 research outputs found
Direct Observation of Large Amplitude Spin Excitations Localized in a Spin-Transfer Nanocontact
We report the direct observation of large amplitude spin-excitations
localized in a spin-transfer nanocontact using scanning transmission x-ray
microscopy. Experiments were conducted using a nanocontact to an ultrathin
ferromagnetic multilayer with perpendicular magnetic anisotropy. Element
resolved x-ray magnetic circular dichroism images show an abrupt onset of spin
excitations at a threshold current that are localized beneath the nanocontact,
with average spin precession cone angles of 25{\deg} at the contact center. The
results strongly suggest that we have observed a localized magnetic soliton.Comment: 5 pages, 3 figure
Long term monitoring of bright TeV Blazars with the MAGIC telescope
The MAGIC telescope has performed long term monitoring observations of the
bright TeV Blazars Mrk421, Mrk501 and 1ES1959+650. Up to 40 observations, 30 to
60 minutes each have been performed for each source evenly distributed over the
observable period of the year. The sensitivity of MAGIC is sufficient to
establish a flux level of 25% of the Crab flux for each measurement. These
observations are well suited to trigger multiwavelength ToO observations and
the overall collected data allow an unbiased study of the flaring statistics of
the observed AGNs.Comment: 4 pages, 4 figures, to appear in the proceedings of the 30th
International Cosmic Ray Conference, Merida, July 200
Comparação entre métodos para determinação de carbono orgânico em amostras de solo mensuradas por volume ou massa.
Recomendação de variedades de milho para o Sul do Brasil: rede de ensaios preliminares-Safra 2009/10.
bitstream/item/45104/1/circular-99.pd
Hubbard band or oxygen vacancy states in the correlated electron metal SrVO?
We study the effect of oxygen vacancies on the electronic structure of the
model strongly correlated metal SrVO. By means of angle-resolved
photoemission (ARPES) synchrotron experiments, we investigate the systematic
effect of the UV dose on the measured spectra. We observe the onset of a
spurious dose-dependent prominent peak at an energy range were the lower
Hubbard band has been previously reported in this compound, raising questions
on its previous interpretation. By a careful analysis of the dose dependent
effects we succeed in disentangling the contributions coming from the oxygen
vacancy states and from the lower Hubbard band. We obtain the intrinsic ARPES
spectrum for the zero-vacancy limit, where a clear signal of a lower Hubbard
band remains. We support our study by means of state-of-the-art ab initio
calculations that include correlation effects and the presence of oxygen
vacancies. Our results underscore the relevance of potential spurious states
affecting ARPES experiments in correlated metals, which are associated to the
ubiquitous oxygen vacancies as extensively reported in the context of a
two-dimensional electron gas (2DEG) at the surface of insulating
transition metal oxides.Comment: Manuscript + Supplemental Material, 12 pages, 9 figure
Asymptotic information leakage under one-try attacks
We study the asymptotic behaviour of (a) information leakage and (b) adversary’s error probability in information hiding systems modelled as noisy channels. Specifically, we assume the attacker can make a single guess after observing n independent executions of the system, throughout which the secret information is kept fixed. We show that the asymptotic behaviour of quantities (a) and (b) can be determined in a simple way from the channel matrix. Moreover, simple and tight bounds on them as functions of n show that the convergence is exponential. We also discuss feasible methods to evaluate the rate of convergence. Our results cover both the Bayesian case, where a prior probability distribution on the secrets is assumed known to the attacker, and the maximum-likelihood case, where the attacker does not know such distribution. In the Bayesian case, we identify the distributions that maximize the leakage. We consider both the min-entropy setting studied by Smith and the additive form recently proposed by Braun et al., and show the two forms do agree asymptotically. Next, we extend these results to a more sophisticated eavesdropping scenario, where the attacker can perform a (noisy) observation at each state of the computation and the systems are modelled as hidden Markov models
Direct observation and imaging of a spin-wave soliton with like symmetry
The prediction and realization of magnetic excitations driven by electrical
currents via the spin transfer torque effect, enables novel magnetic
nano-devices where spin-waves can be used to process and store information. The
functional control of such devices relies on understanding the properties of
non-linear spin-wave excitations. It has been demonstrated that spin waves can
show both an itinerant character, but also appear as localized solitons. So
far, it was assumed that localized solitons have essentially cylindrical,
like symmetry. Using a newly developed high-sensitivity time-resolved
magnetic x-ray microscopy, we instead observe the emergence of a novel
localized soliton excitation with a nodal line, i.e. with like symmetry.
Micromagnetic simulations identify the physical mechanism that controls the
transition from to like solitons. Our results suggest a potential new
pathway to design artificial atoms with tunable dynamical states using
nanoscale magnetic devices
Rendimento e composição química de espécies em consórcio com milho safrinha e rendimento da soja em sucessão, em MS.
bitstream/item/66219/1/32015.pdfFERTBI
Mono Lake Analog Mars Sample Return Expedition for AMASE
We explored the performance of one robotic prototype for sample acquisition and caching of martian materials that has been developed at the Jet Propulsion Laboratory for potential use in the proposed MAX-C Mars Sample Return architecture in an environment, rich in chemical diversity with a variety of mineralogical textures. Mono Lake State Tufa Reserve in Mono County, CA possesses a variety of minerals including a variety of evaporites, volcanic glass and lava, and sand and mudstones. The lake itself is an interesting chemical system: the water is highly alkaline (pH is approximately 10) and contains concentrations of Cl, K, B, with lesser amounts of S Ca Mg, F, As, Li, I and Wand generally enriched HREEs. There are also traces of radioactive elements U, Th, Pl
- …
