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We study the asymptotic behaviour of (a) information leakage and (b) adversary’s error probability
in information hiding systems modelled as noisy channels. Specifically, we assume the attacker can
make a single guess after observing n independent executions of the system, throughout which the
secret information is kept fixed. We show that the asymptotic behaviour of quantities (a) and (b) can
be determined in a simple way from the channel matrix. Moreover, simple and tight bounds on them
as functions of n show that the convergence is exponential. We also discuss feasible methods to
evaluate the rate of convergence. Our results cover both the Bayesian case, where a prior probability
distribution on the secrets is assumed known to the attacker, and the maximum-likelihood case,
where the attacker does not know such distribution. In the Bayesian case, we identify the
distributions that maximize the leakage. We consider both the min-entropy setting studied by Smith
and the additive form recently proposed by Braun et al., and show the two forms do agree
asymptotically. Next, we extend these results to a more sophisticated eavesdropping scenario, where
the attacker can perform a (noisy) observation at each state of the computation and the systems are
modelled as hidden Markov models.

Keywords: security, quantitative information leakage, information theory, Bayes risk, hidden
Markov models.

1. Introduction

In recent years there has been much interest in formal models to reason about quantitative infor-
mation leakage in computing systems (Clark et al. 2001; Chatzikokolakis et al. 2008; Boreale
2009; Köpf and Basin 2007; Backes and Köpf 2008; Smith 2009; Standaert et al. 2009). A gen-
eral situation is that of a program, protocol or device carrying out computations that depend
probabilistically on a secret piece of information, such as a password, the identity of a user or
a private key. We collectively designate these as information hiding systems, following a termi-
nology established in (Chatzikokolakis et al. 2008). During the computation, some observable
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information related to the secret may be disclosed. This might happen either by design, e.g. if the
output of the system is directly related to the secret (think of a password checker denying access),
or for reasons depending on the implementation. In the latter case, the observable information
may take the form of physical quantities, such as the execution time or the power consumption
of the device (think of timing and power attacks on smart cards (Kocher 1996; Kocher et al.
1999)). The observable information released by the system can be exploited by an eavesdropper
to reconstruct the secret, or at least to limit the search space. This is all the more true when the
eavesdropper is given the ability of observing several executions of the system, thus allowing
her/him to mount some kind of statistical attack.

A simple but somehow crucial remark due to Chatzikokolakis et al. (Chatzikokolakis et al.
2008) is that, for the purpose of quantifying the amount of secret information that is leaked, it
is useful to view an information hiding system as a channel in the sense of Information Theory:
the inputs represent the secret information, the outputs represent the observable information and
the two sets are related by a conditional probability matrix. This remark suggests a natural for-
malization of leakage in terms of Shannon entropy based metrics, like mutual information and
capacity. In fact, by a result due to Massey (Massey 1994), these quantities are strongly related to
the resistance of the system against brute-force attacks. Specifically, Shannon entropy is related
to the average number of questions of the form "is the secret equal to x?" an attacker has to ask an
oracle in order to identify the secret with certainty. In a recent paper, Smith (Smith 2009) objects
that, even if the number of such questions is very high, the attacker might still have a significant
chance of correct guess in just one or very few attempts. Smith demonstrates that min-entropy
quantities, based on error probability (a.k.a. Bayes risk), are more adequate to express leakage
in this one-try scenario. Whatever the considered attack scenario, brute-force or one-try, the ana-
lytic computation of leakage is in general difficult or impossible. Henceforth, a major challenge
is being able to give simple and tight bounds on leakage in general, or exact expressions that
exploit specific properties of a system (e.g. symmetries in the channel matrix) in some special
cases.

In the present paper, we tackle these issues in a scenario of one-try attacks and system re-
execution. More precisely, we assume the attacker makes his guess after observing several, say
n, independent executions of the system, throughout which the secret information is kept fixed.
In real-world situations, re-execution may happen either forced by the attacker (think of an ad-
versary querying several times a smart card), or by design (think of routing paths established
repeatedly between a sender and a receiver in anonymity protocols like Crowds (Reiter and Ru-
bin 1998)). Since the computation is probabilistic, in general the larger the number n of observed
executions, the more information will be gained by the attacker. Therefore, it is important to
asses the resistance of a system in this scenario.

Our goal is to describe the asymptotic behaviour of the adversary’s error probability and of
information leakage as n goes to ∞. We show that the asymptotic values of these quantities
can be determined in a simple way from the channel matrix. Moreover, we provide simple and
tight bounds on error probability and on leakage as functions of n, showing that the convergence
is exponential. We also discuss feasible methods for evaluating the rate of convergence. Our
results cover both the Bayesian case (map rule), where a prior probability distribution on the
secrets is assumed known to the attacker, and the maximum-likelihood case (ml rule), where the
attacker does not know such distribution. In the Bayesian case, we identify the distributions that
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maximize leakage. We consider both the min-entropy leakage studied by Smith (Smith 2009)
and the additive form recently proposed by Braun et al. (Braun et al. 2009), and show the two
forms do agree asymptotically.

We next consider a more sophisticated scenario, where computations of the system may take
several steps to terminate, or even not terminate at all. In any case, to each state of the compu-
tation there corresponds one (in general, noisy) observation on the part of the attacker. Hence,
to each computation there corresponds a sequential trace of observations. The attacker may col-
lect multiple such traces, corresponding to multiple independent executions of the system. Like
in the simpler scenario, the secret is kept fixed throughout these executions. This set up is well
suited to describe situations where the attacker collects information from different sources at dif-
ferent times, like in a coalition of different local eavesdroppers. An instance of this situation in
the context of an anonymous routing application will be examined. We formalize this scenario
in terms of discrete-time Hidden Markov Models (Rabiner 1989) and then show that the results
established for the simpler scenario carry over to the new one.

Throughout the paper, we illustrate our results with a few examples: the modular exponen-
tiation algorithm used in public-key cryptography, the Crowds anonymity protocol, S-boxes in
block ciphers and onion routing protocols (Goldschlag et al. 1998) in a network with a fixed
topology.

Related work

The last few years have seen a flourishing of research on quantitative models of information leak-
age. In the context of language-based security, Clark et al. (Clark et al. 2001) first motivated the
use of mutual information to quantify information leakage in a setting of imperative programs.
Boreale (Boreale 2009) extended this study to the setting of process calculi, and introduced
a notion of rate of leakage. In both cases, the considered systems do not exhibit probabilistic
behaviour. Closely related to ours is the work by Chatzikokolakis, Palamidessi and their collab-
orators. (Chatzikokolakis et al. 2008) examines information leakage mainly from the point of
view of Shannon entropy and capacity, but also contains results on asymptotic error probabil-
ity, showing that, independently from the input distribution, the ml rule approximates the map
rule. (Chatzikokolakis et al. 2008b) studies error probability mainly relative to one observation
(n = 1), but also offers a lower-bound in the case of repeated observations (Chatzikokolakis et al.
2008b, Proposition 7.4). This lower-bound is generalized by our results. Compositional methods
based on process algebras are discussed in (Braun et al. 2008); there, the average ml error prob-
ability is characterized in terms of map error probability under a uniform distribution of inputs.
(Braun et al. 2009) introduces the notion of additive leakage and compares it to the min-entropy
based leakage considered by Smith (Smith 2009), but again in the case of a single observation.

A model of "unknown-message" attacks is considered by Backes and Köpf in (Backes and
Köpf 2008). This model is basically equivalent to the information hiding systems considered in
(Chatzikokolakis et al. 2008; Chatzikokolakis et al. 2008b; Braun et al. 2009) and in the present
paper. Backes e Köpf too consider a scenario of repeated independent observations, but from the
point of view of Shannon entropy, rather than of error probability. They rely on the information-
theoretic method of types to determine the asymptotic behaviour of the considered quantities,
as we do in the present paper. An application of their setting to the modular exponentiation
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algorithm is the subject of (Köpf and Dürmuth 2009), where the effect of bucketing on security
of rsa is examined (see Section 5). This study has recently been extended to the case of one-try
attacks by Köpf and Smith in (Köpf and Smith 2010). Earlier, Köpf and Basin had considered a
scenario of adaptive chosen-message attacks (Köpf and Basin 2007). They offer an algorithm to
compute conditional Shannon entropy in this setting, but not a study of its asymptotic behaviour,
which seems very difficult to characterize.

In the context of side-channel cryptanalysis, Standaert et al. propose a framework to reason
on side-channel correlation attacks (Standaert et al. 2009). Both a Shannon entropy based metric
and a security metric are considered. This model does not directly compare to ours, since, as
we will discuss in Section 5, correlation attacks are inherently known-message – that is, they
presuppose the explicit or implicit knowledge of the plaintext on the part of the attacker.

Hypothesis testing is at the basis of the analysis considered in the present paper. The classical,
binary case is covered in (Cover and Thomas 2006, Ch.11). Baignères and Vaudenay (Baignères
and Vaudenay 2008) refine these results and characterize the optimal asymptotic rate of conver-
gence in a number of variations of the basic setting, including the case where one of the two
hypotheses is "composite" – that is, consisting of several sub-hypotheses chosen according to a
prior probability distribution. They apply these results to study the advantage an attacker may
have in distinguishing the output of a given cipher from a random output.

Structure of the paper

The rest of the paper is organized as follows. Section 2 establishes some notations and terminol-
ogy. Section 3 introduces the model and the quantities that are the object of our study. Section
4 discusses the main results about error probability and leakage. Section 5 illustrates these re-
sults with a few examples. Section 6 presents the extension to hidden Markov models. Section 7
illustrates the new setting with an example. Section 8 contains some concluding remarks.

2. Notations and preliminary notions

Let A be a finite nonempty set. A probability distribution on a A is a function p : A → [0, 1]
such that

∑
a∈A p(a) = 1. For any A ⊆ A we let p(A) denote

∑
a∈A p(a). Given n ≥ 0, we let

pn : An → [0, 1] be the n-th extension of p, defined as pn((a1, . . . , an)) 4= Πn
i=1 p(ai); this is in

turn a probability distribution on An. For n = 0, we set p0(ε) = 1, where ε denotes here the
empty string. Given two distributions p and q on A, the Kullback-Leibler (KL) divergence of p
and q is defined as (all the log’s are taken with base 2)

D(p||q) 4=
∑
a∈A

p(a) · log
p(a)
q(a)

with the proviso that 0 · log 0
q(a) = 0 and that p(a) · log p(a)

0 = +∞ if p(a) > 0. It can be shown that
D(p||q) ≥ 0, with equality if and only if p = q (Gibbs inequality). KL-divergence can be thought
of as a sort of distance between p and q, although strictly speaking it is not – it is not symmetric,
nor satisfies the triangle inequality.

Pr(·) will generally denote a probability measure. Given a random variable X taking values in
A, we write X ∼ p if X is distributed according to p, that is for each a ∈ A, Pr(X = a) = p(a).
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3. Probability of error, leakage, indistinguishability

Definition 1. An information hiding system is a quadrupleH = (S,O, p(·), p(·|·)), composed by
a finite set of states S = {s1, ..., sm} representing the secret information, a finite set of observables
O = {o1, ..., ol}, an a priori probability distribution on S, p, and a conditional probability matrix,
p(·|·) ∈ [0, 1]S×O, where each row sums up to 1.

The entry of row s and column o of this matrix will be written as p(o|s), and represents the
probability of observing o given that s is the (secret) input of the system. For each s, the s-th
row of the matrix is identified with the probability distribution o 7→ p(o|s) on O, denoted by ps.
The probability distribution p on S and the conditional probability matrix p(o|s) together induce
a probability distribution r on S × O defined as r(s, o) 4= p(s) · p(o|s), hence a pair of random
variables (S ,O) ∼ r, with S taking values in S and O taking values in O. Note that S ∼ p and,
for each s and o s.t. p(s) > 0, Pr(O = o|S = s) = p(o|s).

Let us now discuss the attack scenario. Given any n ≥ 0, we assume the adversary is a passive
eavesdropper that gets to know the observations corresponding to n independent executions of
the system, on = (o1, ..., on) ∈ On, throughout which the secret state s is kept fixed. Formally, the
adversary knows a random vector of observations On = (O1, ...,On) such that, for each i = 1, ..., n,
Oi is distributed like O and the individual Oi are conditionally independent given S , that is, the
following equality holds true for each on ∈ On and s ∈ S s.t. p(s) > 0

Pr
(
On = (o1, . . . , on) | S = s

)
= Πn

i=1 p(oi|s) .

We will often abbreviate the right-hand side of the above equation as p(on|s). For any n, the
attacker strategy is modeled by a function g : On → S, called guessing function: this represents
the single guess the attacker is allowed to make about the secret state s, after observing on.

Definition 2 (error probability). Let g : On → S be a guessing function. The probability of
error after n observations (relative to g) is given by

P(g)
e (n) 4= 1 − Psucc(n), where P(g)

succ(n) 4= Pr(g(On) = S ) .

It is well-known (see e.g. (Cover and Thomas 2006)) that the optimal strategy for the adversary,
that is the one that minimizes the error probability, is the Maximum A Posteriori (map) rule,
defined below.

Definition 3 (Maximum A Posteriori rule, map). A function g : On → S satisfies the Maximum
A Posteriori (map) criterion if for each on and s

g(on) = s implies p(on|s)p(s) ≥ p(on|s′)p(s′) for each s′ .

In the above definition, for n = 0 one has on = ε, and it is convenient to stipulate that p(ε|s) =

1: that is, with no observations at all, g selects some s maximizing the prior distribution. With
this choice, P(g)

e (0) denotes 1 − maxs p(s). It worthwhile to note that, once n and p(s) are fixed,
the map guessing function is not in general unique. It is readily checked, though, that Pe(n) does
not depend on the specific map function g that is chosen. Hence, throughout the paper we assume
w.l.o.g. a fixed guessing function g for each given n and probability distribution p(s). We shall
omit the superscript (g), except where this might cause confusion.

Another widely used criterion is Maximum Likelihood (ml), which given on selects a state
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s maximizing the likelihood p(on|s) among all the states. ml coincides with map if the uniform
distribution on the states is assumed. ml is practically important because it requires no knowledge
of the prior distribution, which is often unknown in security applications. Our main results will
also apply to the ml rule (see Remark 2 in the next section).

We now come to information leakage: this is a measure of the information leaked by the sys-
tem, obtained by comparing the prior and the posterior (to the observations) success probabilities.
Indeed, two flavours of this concept naturally arise, depending on how the comparison between
the two probabilities is expressed. If one uses subtraction, one gets the additive form of (Braun
et al. 2009), while if one uses the ratio between them, one gets a multiplicative form. In the latter
case, one could equivalently consider the difference of the log’s, obtaining the min-entropy based
definition considered by Smith (Smith 2009)†.

Definition 4 (Additive and Multiplicative Leakage (Braun et al. 2009; Smith 2009)). The
additive and multiplicative leakage after n observations are defined respectively as

L+(n) 4
= Psucc(n) −max

s
p(s) and L×(n) 4

=
Psucc(n)

maxs p(s)
.

In an information hiding system, it may happen that two secret states induce the same distribu-
tion on the observables. A common example is that of a degenerate channel matrix modelling a
deterministic function S → O with |O| < |S|. An important role in determining the fundamental
security parameters of the system will be played by an indistinguishability equivalence relation
over states, which is defined in the following. Recall that, for each s ∈ S, we let ps denote the
probability distribution p(·|s) on O.

Definition 5 (Indistinguishability). Given s, s′ ∈ S, we let s ≡ s′ iff ps = ps′ .

Concretely, two states are indistinguishable iff the corresponding rows in the conditional prob-
ability matrix are the same. This intuitively says that there is no way for the adversary to tell
them apart, no matter how many observations he performs. We stress that this definition does not
depend on the prior distribution on states, nor on the number n of observations.

4. Bounds and asymptotic behaviour

We introduce some notation that will be used throughout the section. Let S/ ≡ be {C1, ...,CK},
the set of equivalence classes of ≡. For each i = 1, ...,K, let

s∗i
4
= argmaxs∈Ci

p(s) and p∗i
4
= p(s∗i ) . (1)

We assume wlog that p∗i > 0 for each i = 1, ...,K (otherwise all the states in class Ci can be just
discarded from the system).

† Smith (Smith 2009) defines the leakage as log Vpost
Vpr

, where, using our notation, Vpr
4
= maxs p(s) is the prior vulner-

ability and Vpost
4
=

∑
on Pr(On = on) · maxs Pr(S = s|On = on) is the posterior vulnerability (after n observations;

Smith only defines the case n = 1). To see that Vpost = Psucc(n), just note that Psucc(n) =
∑

on Pr(On = on) ·Pr(g(on) =

S |On = on) =
∑

on Pr(On = on) ·maxs Pr(S = s|On = on), where the last equality follows because g is map.

6



4.1. Main results

We shall prove the following bounds and asymptotic behaviour for Pe(n).

Theorem 1. Pe(n) converges exponentially fast to 1−
∑K

i=1 p∗i . More precisely, there is ε > 0 s.t.

1 −
∑K

i=1 p∗i ≤ Pe(n) ≤ 1 − (
∑K

i=1 p∗i ) · r(n)

where r(n) = 1 − (n + 1)|O| · 2−nε . Here, the lower-bound holds true for any n, while the upper-
bound holds true for any n ≥ n0

4
= ε−1 ·maxi, j log( p∗i

p∗j
). Moreover, ε only depends on the rows ps∗i

(i = 1, ...,K) of the conditional probability matrix p(·|·).

Note that in the practically important case of the uniform distribution on states, we have n0 = 0,
that is the upper-bound as well holds true for any n. The theorem has a simple interpretation in
terms of the attacker’s strategy: after infinitely many observations, he can determine the indistin-
guishability class of the secret, say Ci, and then guess the most likely state in that class, s∗i .

In order to discuss this result, we recall some terminology and a couple of preliminary results
from the information-theoretic method of types (Cover and Thomas 2006, Ch.11). Given n > 0,
a sequence on ∈ On and a symbol o ∈ O, let us denote by n(o, on) the number of occurrences of o
inside on. The type (or empirical distribution) of on is the probability distribution ton on O defined
as: ton (o) 4

=
n(o,on)

n . Let q any probability distribution on O. A neighborhood of q is a subset of
n-sequences of On whose empirical distribution is close to q. Formally, for each n ≥ 1 and ε > 0

U(n)
q (ε) 4

= {on ∈ On |D(ton ||q) ≤ ε} .

The essence of the method of types is that (i) there is only a polynomial number of types in n, and
that (ii) the probability under q of the set of n-sequences of a given type decreases exponentially
with n, at a rate determined by the KL-divergence between q and that type. These considerations
are made precise and exploited in the proof of the following lemma, which can be found in
(Cover and Thomas 2006, Ch.11). The lemma basically says that the probability that a sequence
falls in a neighborhood of q of radius ε approaches 1 exponentially fast with n.

Lemma 1. Let q be a probability distribution on O. Then qn(U(n)
q (ε)) ≥ 1 − (n + 1)|O| · 2−nε .

We shall also rely upon the well-known fact that the map test can be expressed in terms of KL-
divergence. Basically, the distribution that is most likely to have generated a given sequence is
the one that is closest to the type of the sequence in the sense of KL-divergence. In the statement,
α and β represent the prior probabilities of the states corresponding to the two distributions. The
proof follows from easy manipulations of log’s and summations (see (Cover and Thomas 2006,
Ch.11)).

Lemma 2. Let p and q be two distributions on O, α, β > 0 and on ∈ On. Then pn(on)α > qn(on)β
is equivalent to D(ton ||p) < D(ton ||q) + 1

n log α
β

.

Let us now come back to the proof of the main result. For any s ∈ S, we let A(n)
s
4
= g−1(s) ⊆ On

be the acceptance region for state s. We note that it is not restrictive to assume that g maps
each on in one of the K representative elements s∗1, ..., s

∗
K that maximize the prior: indeed, if this

were not the case, it would be immediate to build out of g a new map function that fulfills this
requirement. Thus, from now on we will assume w.l.o.g. that A(n)

s = ∅ for s , s∗1, ..., s
∗
K . For the
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sake of notation, from now on we will denote U(n)
ps∗i

as U(n)
i and A(n)

s∗i
as A(n)

i , for i = 1, ...,K. The

sets U(n)
i and A(n)

i are related by the following lemma.

Lemma 3. There is ε > 0, not depending on the prior probability on states, such that for each
n ≥ n0 as defined in Theorem 1 and for each i = 1, ...,K, it holds that U(n)

i (ε) ⊆ A(n)
i .

Proof. We choose ε > 0 s.t. for any i , j, U(n)
i (2ε) ∩ U(n)

j (2ε) = ∅: the existence of such an ε
is guaranteed by (Cover and Thomas 2006, Lemma 11.6.1) and only depends on ps∗1 , ..., ps∗K (see
also Proposition 1 later in this section for an estimation of the permissible ε’s). Fix i ∈ {1, ...,K}
and on ∈ U(n)

i (ε), we will show that, for n large enough, on ∈ A(n)
i . By the conditions on ε, we

have that for any j , i:

D(ton ||ps∗i ) ≤ ε and D(ton ||ps∗j ) > 2ε .

After some algebra, one gets that, for any n ≥ n0

D(ton ||ps∗i ) < D(ton ||ps∗j ) +
1
n

log
p∗i
p∗j
. (2)

Now, by Lemma 2, inequality (2) is equivalent to

p(on|s∗i )p(s∗i ) = pn
s∗i

(on)p∗i > pn
s∗j

(on)p∗j = p(on|s∗j)p(s∗j) . (3)

Since this inequality holds true for each j , i, by definition of map rule we deduce that g maps
on to s∗i , that is on ∈ A(n)

i .

We now come to the proof of the main theorem above.

Proof. (of Theorem 1). We focus equivalently on the probability of success, Psucc(n). Under
the assumptions on g explained above, we compute as follows

Psucc(n) =
∑

s∈S Pr(g(On) = S |S = s)p(s) =
∑

s∈S pn
s(A(n)

s )p(s)

=
∑K

i=1 pn
s∗i

(A(n)
i )︸   ︷︷   ︸

≤1

p∗i ≤
∑K

i=1 p∗i

which implies the lower-bound in the statement. Choose now ε as given by Lemma 3. Let n ≥ n0.
Note that for n = 0 the upper-bound holds trivially, as Pe(0) = 1 − maxs p(s), so assume n ≥ 1.
For each i = 1, ...,K we have

pn
s∗i

(A(n)
i ) ≥ pn

s∗i
(U(n)

i (ε)) ≥ 1 − (n + 1)|O| · 2−nε

where the first inequality comes from Lemma 3 and second one from Lemma 1. In the end, from
Psucc(n) =

∑K
i=1 pn

s∗i
(A(n)

i )p∗i , we obtain that for n ≥ n0

Psucc(n) ≥ (
K∑

i=1

p∗i ) · (1 − (n + 1)|O| · 2−nε)

which implies the upper-bound in the statement.

Remark 1. In the expression for r(n), the term (n + 1)|O| is a rather crude upper bound on the
number of types of n-sequences. It is possible to replace this term with the expression(

n + |O| − 1
|O| − 1

)
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which is less easy to manipulate analytically, but gives the exact number of types, hence a more
accurate upper bound on Pe(n).

The following results show that, asymptotically, the security of the systems is tightly connected
to the number of its indistinguishability classes – and in the case of uniform prior distribution
only depends on this number

Corollary 1. If the a priori distribution on S is uniform, then Pe(n) converges exponentially fast
to 1 − K

|S|
.

Remark 2 (on the ml rule). (Braun et al. 2008) shows that the probability of error under the
ml rule, averaged on all distributions, coincides with the probability of error under the map rule
and the uniform distribution. From Corollary 1 we therefore deduce that the average ml error
converges exponentially fast to the value 1 − K

|S|
as n→ ∞.

We discuss now some consequences of the above results on information leakage. Recall that
for i = 1, ...,K, we call s∗i a representative of the indistinguishability class Ci that maximizes the
prior distribution p(s) in the class Ci, and let p∗i = p(s∗i ). Assume w.l.o.g. that p∗1 = maxs p(s). In
what follows, we denote by pmax the distribution on S defined by: pmax(s) = 1

K if s ∈ {s∗1, ..., s
∗
K}

and pmax(s) = 0 otherwise.

Corollary 2.
1 L+(n) converges exponentially fast to

∑K
i=2 p∗i . This value is maximized by the prior distribu-

tion pmax, which yields the limit value 1 − 1
K .

2 L×(n) converges exponentially fast to
∑K

i=1 p∗i
p∗1

. This value is maximized by the prior distribution
pmax, which yields the limit value K.

Proof.

1 The value of the limit follows directly from the definition of L+(n) and Theorem 1. Concern-
ing the second part, for any fixed p(s), it is easily checked that

∑K
i=2 p∗i ≤ 1 − 1

K (this is done
by separately considering the cases maxs p(s) ≥ 1

K and maxs p(s) < 1
K ). But the value 1 − 1

K
is obtained asymptotically with the distribution pmax.

2 Again, the value of the limit follows directly from the definition of L×(n) and Theorem 1.
Concerning the second part, for any fixed p(s), of course we have

∑K
i=1

p∗i
p∗1
≤

∑K
i=1 1 = K. But

the value K is obtained asymptotically with the distribution pmax.

Remark 3. A consequence of Corollary 2(2) is that, in the case of uniform distribution on states,
the multiplicative leakage coincides with the number of equivalence classes K. This generalizes
a result of (Smith 2009) for deterministic systems.

In (Braun et al. 2009) additive and multiplicative leakages are compared in the case of a single
observation (n = 1). It turns out that, when comparing two systems, the two forms of leakage
are in agreement, in the sense that they individuate the same maximum-leaking system w.r.t. a
fixed prior distribution on inputs. However, (Braun et al. 2009) also shows that the two forms
disagree as to the distribution on inputs that maximizes leakage w.r.t. a fixed system. This is
shown to be the uniform distribution in the case of multiplicative leakage, and a function that

9



uniformly distributes the probability on the set of "corner points" in the case of additive leakage
(see (Braun et al. 2009) for details). Here, we have shown that, despite this difference, additive
and multiplicative leakage do agree on the maximizing distribution asymptotically.

4.2. Rate of convergence

The quantity ε in the statement of Theorem 1 determines how fast the error probability ap-
proaches its limit value. Let us call achievable any ε > 0 for which the upper bound in Theorem
1 holds true for any n ≥ n0. The following result gives sufficient and practical conditions for
achievability. Let us stress that the achievable rates given by this proposition do not depend on
the prior distribution, but only on the relation ≡, and specifically on the minimum norm 1 dis-
tance between equivalence classes: the larger this distance, the higher the achievable rates. This
result is essentially a re-elaboration on (Cover and Thomas 2006, Lemma 11.6.1).

Proposition 1. Let δ 4= minsi.s j ||psi − ps j ||1. Then any rate ε satisfying 0 < ε < δ2

16 ln 2 is achiev-
able.

Proof. Using the notation introduced immediately above Lemma 3, we show that, for any ε
satisfying the hypotheses in the present lemma, one has U(n)

i (2ε) ∩ U(n)
j (2ε) = ∅ for i , j, which

guarantees that ε can be used in the proof of Lemma 3, hence in the statement of Theorem 1.
According to (Cover and Thomas 2006, Lemma 11.6.1), for any two distributions p and q on
the same set O, it holds true that D(p||q) ≥ 1

2 ln 2 ||p − q||21. Take any on ∈ U(n)
i (2ε). Assume by

contradiction that on ∈ U(n)
j (2ε) for any j , i. Then we would get

δ ≤ ||ps∗i − ps∗j ||1 ≤ ||ps∗i − ton ||1 + ||ton − ps∗j ||1

≤

√
2 ln 2D(ton ||ps∗i ) +

√
2 ln 2D(ton ||ps∗j )

≤ 2
√

4ε ln 2

< δ

where: the first inequality above exploits the triangle inequality for || · ||1, the second one exploits
the inequality D(p||q) ≥ 1

2 ln 2 ||p− q||21 mentioned above, the third one follows by definition of the
balls U(n)

j (2ε) and U(n)
i (2ε), and the last one follows from the hypothesis on ε and some algebra.

In the practically important case where the p∗i ’s are all equal, the above proposition can be
strengthened as follows.

Proposition 2. Suppose p∗1 = p∗2 = · · · = p∗K . Let δ be like in Proposition 1. Then any rate ε
satisfying 0 < ε < δ2

8 ln 2 is achievable.

Proof. In the proof of Lemma 3, the condition (3) is equivalent to (2). Under the hypothesis the
p∗i ’s are all equal, the term 1

n log
p∗j
p∗i

vanishes, so (2) reduces to D(ton ||ps∗i ) < D(ton ||ps∗j ). For this to

be the case, it is sufficient that U(n)
i (ε) ∩ U(n)

j (ε) = ∅. Proceeding like in the proof of Proposition
1, we can show that the conditions on ε imposed in the present proposition are sufficient to
guarantee this disjointness.
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The above results prompt the following question. Suppose one somehow ignores the rows of
p(·|·) that are close together with each other, and only consider rows that are far from each other:
is it then possible to achieve a higher rate of convergence ε? The answer is expected to be yes,
although ignoring some rows might lead to a possibly higher asymptotic error probability. In
other word, it should be possible to trade off accuracy in guessing with rate of convergence. This
is the content of the next proposition.

Proposition 3. Let ∅ , S0 ⊆ {s∗1, ..., s
∗
K}. Then there is ε > 0 only depending on the rows ps,

s ∈ S0, of p(·|·), such that for each n ≥ n0
4
= ε−1 maxs∗i ,s

∗
j∈S0 log( p∗i

p∗j
), it holds true that

Pe(n) ≤ 1 − (
∑

s∗j∈S0

p∗j) · r(n) with r(n) = 1 − (n + 1)|O| · 2−nε .

Proof. For any n, let A(n)
s (s ∈ S) be the acceptance regions determined by any map guessing

function. Choose any s∗ ∈ S0. Define the new acceptance regions B(n)
s as follows: B(n)

s
4
= ∅ if

s < S0; B(n)
s
4
= A(n)

s if s ∈ S0 \{s∗}; B(n)
s∗
4
= A(n)

s∗ ∪∪s<S0 A(n)
s . For each n, the regions B(n)

s determine a
new guessing function, say g′, which will in general not be map. Now, repeating the computation
in the proof of Theorem 1 with the regions B(n)

s instead of A(n)
s , one finds

P(g′)
e (n) ≤ 1 − (

∑
s∗j∈S0

p∗j) · (1 − (n + 1)|O| · 2−nε) .

The wanted result follows from the optimality of the map rule, which implies Pe(n) ≤ P(g′)
e (n).

These concepts are demonstrated in the following example.

Example 1. Consider the small imperative procedure p() described below. There, h and l are
two-bits integer global variables, while rnd() is a procedure returning a random real value in
the interval [0, 1]. Boolean values true and false are identified with integers 1 and 0, respec-
tively.

proc p();

{

l=rnd();

if not(h mod 2) then l=(l >= .5) else l=1+(l >= (.5 + (h div 2)*10^-5) );

return l

}

Now we consider the case that h is a sensitive variable, whose initial vale is initially chosen in
the range 0..3, and then never modified. We assume that p() can be invoked several times. One
is interested in analysing the asymptotic information leakage relative to h caused by p(). We can
model the procedure p() as an information hiding system, as follows.

Let S = {0, 1, 2, 3} be the set of possible values of h, and O = {0, 1, 2} the set of possible
values returned by p(). The prior probability distribution on S is non-uniform and given by:
p(0) = p(1) = 1

2 − 10−9 and p(2) = p(3) = 10−9. The behaviour of p() can be described by the
conditional probability matrix displayed on the next page.
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0 1 2

0 1
2

1
2 0

1 0 1
2

1
2

2 1
2

1
2 0

3 0 1
2 + 10−5 1

2 − 10−5

Note that 0 ≡ 2. Applying Theorem 1, we find that, for n sufficiently large, 1 − E ≤ Pe(n) ≤
1 − E · r(n), where E = 1 − 10−9 and r(n) = 1 − (n + 1)3 · 2−nε . Applying Proposition 1, we find
that any rate ε < 3.6067 × 10−11 is achievable. Thus the convergence to the value 1 − E = 10−9

is very slow. One wonders if there is some value 1 − E′ that is only slightly higher than 1 − E,
but that can be reached much faster. This is indeed the case. Observe that rows 1 and 3 are very
close with each other in norm-1 distance: ||p1 − p3||1 = 2 × 10−5. We can discard row 3, which
has a very small probability, and then apply Proposition 3 with S0 = {0, 1} to get

Pe(n) ≤ 1 − E′ · r′(n)

where E′ = 1
2 − 10−9 + 1

2 − 10−9 = 1− 2× 10−9 and r′(n) = 1− (n + 1)3 · 2−nε′ . The rate ε′ can be
computed by applying Proposition 2, as p(0) = p(1). By doing so, we get that any ε′ < 0.18034 is
achievable. This implies that the value 1−E′ is approached much faster as n grows. For instance,
already after n = 350 invocations we get that (1 − E′)/Pe(n) > 0.99.

Remark 4 (on optimal achievable rates). Proposition 1 does not give indications as to the best
achievable rate. Now, the case |S| = 2, in which the attacker has to decide between s1 and s2,
corresponds to classical Bayesian hypothesis testing. In this case, provided the distributions ps1

and ps2 have both full support (are everywhere positive on O), it is well-known that the optimal
rate of convergence ε is given by the Chernoff Information between ps1 and ps2 (see (Cover
and Thomas 2006, Ch.11) for details). It is possible to extend this result to the general case of
multiple hypotesis testing, hence to our setting, again with the proviso that all the distributions
psi have full support: in this case, the rate of convergence will be given by the least Chernoff

Information between any two distinct distributions (Leang and Johnson 1997). In practice, we
have found that most of the times Proposition 1 and 2 provide very good approximations of the
optimal achievable rates.

5. Examples

5.1. Timing leaks and blinding in modular exponentiation

In the ’90’s, P. Kocher showed that rsa and other public-key crypto-systems are subject to side-
channel attacks exploiting information leaked by implementations of the modular exponentiation
algorithm, such as execution time (Kocher 1996) and/or power consumption (Kocher et al. 1999).
Many of these attacks are based on the assumption that the attacker can observe repeated inde-
pendent execution of the system, throughout which the exponent – the secret key – is kept fixed.
Here, we concentrate on timing attacks. Blinding (Kocher 1996) was early proposed as a coun-
termeasure to thwart such attacks. The essence of blinding is that exponentiation is performed on
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a random message unknown to the attacker, rather than on the original message (to be decrypted
or digitally signed) known to the attacker. This appears to be sufficient to thwart Kocher’s attack,
which is of chosen-ciphertext type.

Köpf and Dürmuth (Köpf and Dürmuth 2009) have recently argued that, however effective
in practice, the exact degree of protection provided by blinding remains unclear. They therefore
propose to enhance blinding with bucketing, a technique by which the algorithm’s execution
times are adjusted so as to always fall in one of few predefined values. This allows them to prove
information-theoretic bounds, based on Shannon’s entropy, on the quantity of information leaked
by the algorithm. This quantity is in fact very small for typical rsa parameters, which lets them
conclude that bucketing in the presence of blinding provides a formal guarantee of security, at
the cost of a very moderate overhead. In another recent work (Köpf and Smith 2010), Köpf and
Smith have extended this result to the case of one-try attacks, where the leaked information is
measured in terms of min-entropy, which is precisely the log of the multiplicative leakage L× we
have considered.

Below, we refine Köpf and Smith’s analysis, under a reasonable assumption on the func-
tioning of the algorithm that will be described shortly. We consider an implementation of the
modular exponentiation algorithm with blinding, but no bucketing. To such an implementation,
there corresponds an information hiding system where: S = K = {0, 1}N is the set of private
keys, i.e. the possible exponents of the algorithm, over which we assume a uniform distribution‡;
O = {t1, t2, ...} is the set of possible execution times; p(t|k) is the probability that, depending on
the deciphered message, the execution of the algorithm takes times t given that the private key is
k. To be more specific about the last point, we assume an underlying set of messagesM, with a
known prior distribution pM(m), and a function§ time : M× S → O that yields the duration of
the execution of the algorithm when its argument is a given pair (m, k). Then the entries of the
probability matrix p(t|k) can be defined thus

p(t|k) 4=
∑

m∈M:time(m,k)=t pM(m) .

Now, modular exponentiation functions in such a way that at the i-th iteration (0 ≤ i < N), either
a squaring or both a squaring and a multiply are performed, depending on whether the i-th bit
of the exponent is 0 or 1. Given this functioning, it seems reasonable to assume that, for each
m, the execution time only depends on the number of ’1’ digits in k. In other words, we assume
that whenever k and k′ have the same Hamming weight, time(m, k) = time(m, k′), for any m.
From this assumption and the definition of p(t|k), it follows that whenever k and k′ have the same
Hamming weight then p(·|k) = p(·|k′). So, in the system there are at most as many ≡-classes as
Hamming weights, that is N + 1. The results in Section 4 then allow us to conclude that for any n

Pe(n) ≥ 1 − N+1
2N .

For any practical size of the key, say N = 1024, this value is ≈ 1. Accordingly, additive and
multiplicative leakage satisfy, asymptotically,

‡ In the case of rsa, a negligible fraction of the exponents is ruled out by virtue of number theoretic requirements, so
the resulting distribution is not exactly uniform on S. This fact does not substantially affect the significance of our
analysis.
§ A more realistic modeling would make time(m, k) a joint probability distribution. Again, this modification would not

affect the final result.
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L+ ≤
N
2N and L× ≤ N + 1 .

For any practical size of the key, say N = 1024, these upper bounds yield negligible values:
L+ ≈ 0 and L× ≤ 1025. In the latter case, taking the log we obtain that no more than log(1025) =

10.001 bits of min-entropy are leaked, out of 1024. In conclusion, under the further assumption
on the behaviour of modular exponentiation we made above, blinding alone appears to provide
satisfactory guarantees of security against one-try attacks.

5.2. Protocol re-execution in Crowds

The Crowds protocol (Reiter and Rubin 1998) is designed for protecting the identity of the
senders of messages in a network where some of the nodes may be corrupted, that is, under the
control of an attacker. Omitting a few details, the functioning of the protocol can be described
quite simply: the sender first forwards the message to a node of the network chosen at random; at
any time, any node holding the message can decide whether to (a) forward in turn the message to
another node chosen at random, or (b) submit it to the final destination. The choice between (a)
and (b) is made randomly, with alternative (a) being assigned probability p f (forwarding proba-
bility) and alternative (b) probability 1 − p f . The rationale here is that, even if a corrupted node
C receives the message from a node N (in the Crowds terminology, C detects N), C, hence the
attacker, cannot decide whether N is the original sender or just a forwarder. In fact, given that
N is detected, the probability of N being the true sender is only slightly higher than that of any
other node being the true sender. So the attacker is left with a good deal of uncertainty as to the
sender’s identity. Reiter and Rubin have showed that, depending on p f , on the fraction of cor-
rupted nodes in the network and on a few other conditions, Crowds offers very good guarantees
of anonymity (see (Reiter and Rubin 1998)).

Chatzikokolakis et al. have recently analyzed Crowds from the point of view of information
hiding systems and one-try attacks (Chatzikokolakis et al. 2008; Chatzikokolakis et al. 2008b).
In their modelling, S = {s1, ..., sm} is the set of possible senders (honest nodes), while O =

{d1, ..., dm} is the set of observables. Here each di has the meaning that node si has been detected
by some corrupted node. The conditional probability matrix is given by

p(d j|si)
4
= Pr

(
s j is detected | si is the true sender and some honest node has been detected

)
(see (Reiter and Rubin 1998) for details of the actual computation of these quantities). An exam-
ple of such a system with m = 20 users, borrowed from (Chatzikokolakis et al. 2008b), is given
in Figure 1.

The interesting case for us is that of re-execution, in which the protocol is executed several
times, either forced by the attacker himself (e.g. by having corrupted nodes suppress messages)
or by some external factor, and the sender is kept fixed through the various executions. This
implies the attacker collects a sequence of observations on = (o1, ..., on) ∈ On, for some n.
The repeated executions are assumed to be independent, hence we are precisely in the setting
considered in this paper. This case is also considered in (Chatzikokolakis et al. 2008b), which
gives lower bounds for the error probability holding for any n. Our results in Section 4 generalize
those in (Chatzikokolakis et al. 2008b) by providing both lower- and upper- bounds converging
exponentially fast to the asymptotic error probability. As an example, for the system in the table
above, we have Pe(n)→ 0, independently of the prior distribution on the senders. An achievable
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d1 d2 · · · d20

s1 0.468 0.028 · · · 0.028

s2 0.028 0.468 · · · 0.028
...

...

s20 0.028 0.028 · · · 0.468

Figure 1. The conditional probability matrix of Crowds for 20 honest nodes, 5 corrupted nodes and p f = 0.7.

convergence rate, estimated with the method of Proposition 1, is ε ≈ 0.13965. This implies that
already after observing n = 1000 re-executions the probability of error is, using the refined bound
given in Remark 1, < 0.01.

It is worth to stress that protocol re-execution is normally prevented in Crowds for the very rea-
son that it decreases anonymity, although it may be necessary in some cases. See the discussion
on static vs. dynamic paths in (Reiter and Rubin 1998).

5.3. Hamming weight attacks against S-boxes

Timing (Kocher 1996) and power analysis (Kocher et al. 1999) are two flavours of side-channel
correlation attacks against cryptographic devices (Brier et al. 2004; Standaert et al. 2009). These
attacks presuppose, explicitly or implicitly, that attacker knows the inputs (messages) processed
by the target device¶. Basically, the attack is carried out by simulating the device’s computations
under the different candidate keys, each time using as inputs the same messages processed by the
device. This way, the attacker obtains different samplings of the leakage from the side-channel,
one for each candidate key. He will then choose the key that generates the sampling that is most
correlated with the one obtained from the device.

Here, we wonder to what extent knowledge of the messages is necessary to extract signifi-
cant amount of information from the side-channel. Differently from correlation attacks, we will
therefore assume that input messages have a nonzero, moderate redundancy, but not that they are
known to the attacker. We analyze the case of des S-boxes. Similar analyses could be conducted
against different types of symmetric keys devices. Our analysis applies to any round, in fact, to
any context where an adversary may get to observe the Hamming weight of the S-box output.
A des S-box can be described as a function that takes as an input a pair of a message and a key
and yields as an output a block of ciphertext, S B : K ×M → C, where: K = {0, 1}6 is the set
of keys,M = {0, 1}6 is the set of messages and C = {0, 1}4 is the set of ciphertexts. The internal
details of the device are unimportant for the purpose of this illustration. We assume a uniform
prior distribution onK and some known prior distribution onM, say pM . Similarly to (Kelsey et
al. 2000), we assume the attacker can create a side-channel delivering him the Hamming weight
of the target S-box’ output. To the S-box thus described there corresponds an information hiding

¶ In some circumstances, this knowledge is granted by the application. For example, in an attack against the final round
of any Feistel cipher, the left half of the output is also the input of the target round function (see (Kelsey et al. 2000)).
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system where: S = K , O = {0, 1, 2, 3, 4} is the set of observables, i.e. the Hamming weights, and
p(o|k) is defined as

p(o|k) 4=
∑

m∈M:W(S B(m,k))=o pM(m)

where W(·) is the Hamming weight function.
We report here on our results about the first of the eighth S-boxes of des. Analysis of other S-

boxes leads to similar conclusions. The distribution of the plaintext, pM , plays a crucial role here:
the lower the redundancy, the less information is expected to be extracted from the side-channel.
For example, if pM is the uniform distribution (0% redundancy), then it is easy to see that all the
rows of the matrix p(o|k) are the same, hence Pe(n) = 1−1/64 for each n: the adversary cannot do
any better than random guessing. For our analysis, we have chosen a plaintext with a redundancy
of about 27% (H(pM) = 4.39 bits), obtained by sampling ascii text from some web pages. In the
resulting matrix, p(o|k), all the rows are different, which implies that Pe(n)→ 0. Concerning the
rate of convergence, the method of norm-1 difference (Proposition 1) yields ε ≈ 4.0822 × 10−4.
This means that with n ≥ 1.7 × 105 observations the error probability is < 0.045 (here and in
what follows, we use the refined bound given in Remark 1). Discarding the keys corresponding
to the seven shortest norm-1 distances, one would get ε ≈ 1.2179 × 10−3. Applying Proposition
3, one gets an error probability ≤ 0.11 already with n = 6 × 104 observations.

In a more realistic scenario, the attacker could not directly measure the Hamming weight of
the target S-box, but rather the global weight of the eight S-boxes composing the round function
of des. This scenario can be modeled as a noisy version of the previous one. The Hamming
weight of the target S-box, O, is now disturbed by the noise N, the sum of the Hamming weights
of the remaining seven S-boxes, say W2, ...,W8. Assuming that the variables Wi are independent
from each other and from O and identically distributed – this is not strictly true, but seems a
reasonable approximation – the central limit theorem would tell us that their sum N =

∑8
i=2 Wi

has approximately a normal distribution. Here, for simplicity we model N as a random variable
having binomial distribution B(n, p) with n = 28 and p = 1

2 . What is observed by the attacker

now is O′ 4= O + N. Hence the new set of observables is O′ = {0, ..., 32}. Explicitly, for each
i ∈ O′ and k ∈ K , the entries of the new conditional probability matrix p′(·|·) are given by

p′(i|k) 4= Pr(O + N = i |K = k) =

min{i,4}∑
j=0

p( j|k) ·
(

28
i − j

)
· 2−28 .

Proposition 1 applied to the matrix p′(·|·) yields a rate of ε ≈ 1.9275 × 10−6. Theorem 1 gives
Pe(n) < 0.0007 for n ≥ 4.2×108. As expected, the convergence rate is lower than in the noiseless
case. However, the effort needed to break the system is certainly in the reach of a well determined
attacker.

Our simple analysis confirms that unprotected implementations of des S-boxes are quite vul-
nerable to attacks based on Hamming weights. Software simulations have reinforced this con-
clusion, showing that, in practice, a good success probability for the adversary is achieved with
a relatively small n. For instance, in the noiseless case, already with n = 103, we have obtained
an experimental success rate of 99%.
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6. Sequential observations and hidden Markov models

The attack model discussed in the preceding sections presupposes that the computation involving
the secret information takes place in a single step. Or, more accurately, that the intermediate
states of the computation are not accessible to the attacker. Here, we consider a more refined
scenario, where computations may take several steps to terminate, or even not terminate at all.
In any case, to each state of the computation there corresponds one observation on the part of
the attacker. Hence, to each computation there corresponds a sequential trace of observations.
The attacker may collect multiple such traces, corresponding to multiple independent executions
of the system. Throughout these executions, the secret information is kept fixed. This set up is
well suited to describe situations where the attacker collects information from different sources
at different times, like in a coalition of different local eavesdroppers. An instance of this situation
in the context of an anonymous routing application will be examined later on.

Discrete-time Hidden Markov Models (Rabiner 1989) provide a convenient setting to formally
model such systems, which we may designate as sequential information hiding system.

6.1. Definitions

Let S and O be finite sets of states and observations, respectively. A (discrete-time, homoge-
neous) Hidden Markov Model (hmm) with states in S and observations in O is a a pair of random
processes

〈
(S i)i≥1 , (Oi)i≥1

〉
, such that, for each t ≥ 1

— S t and Ot are random variables taking values in S and O, respectively; and,
— the following equalities hold true (whenever the involved conditional probabilities are de-

fined):
Pr(S t+1 = st+1|S t = st,Ot = ot, ..., S 1 = s1,O1 = o1) = Pr(S t+1 = st+1|S t = st) (4)

Pr(Ot = ot |S t = st, S t−1 = st−1,Ot−1 = ot−1, ..., S 1 = s1,O1 = o1) = Pr(Ot = ot |S t = st) (5)

Moreover, the value of the above probabilities does not depend on the index t, but only on
st, st+1 and ot.

Equation (4) says that the state at time t + 1 only depends on the state at time t, that is (S i)i≥1

forms a Markov chain. Equation (5) says that the observation at time t only depends on the state
at time t. A consequence of this equation is that the state at time t + 1 is independent from the
observation at time t, given the state at time t, that is

Pr(Ot = ot, S t+1 = st+1|S t = st) = Pr(Ot = ot |S t = st) · Pr(S t+1 = st+1|S t = st) . (6)

Graphically, a hmm can be represented by a diagram like the one below, where the nodes are
random variables and the presence of a pair of arrows X ← Y → Z or X → Y → Z signifies
conditional independence of X and Z given Y .

S 1

O1

S 2

O2

S 3

O3

· · ·

· · ·

Assume now S = {s1, ..., sm} and O = {o1, ..., ol}. A finite-state hmm on S and O is completely
specified by, hence can be identified with, a triple (π, F,G) such that:
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— π ∈ R1×m is a row-vector representing the prior distribution on S, that is π(i) = p(S 1 = si) for
each 1 ≤ i ≤ m;

— F ∈ Rm×m is a matrix such that F(i, j) is the probability of transition from si to s j, for
1 ≤ i, j ≤ m;

— G ∈ Rm×l is a matrix such that G(i, j) is the probability of observing o j at state si, for 1 ≤ i ≤
m and 1 ≤ j ≤ l.

In our scenario, a Bayesian attacker targets the first state of the computation, that is the value
of S 1. We are interested in analyzing the attacker’s probability of error after observing n traces
of length t, corresponding to n conditionally independent executions of the system up to and
including time t, as both n and t go to +∞. This we define in the following. Let σ range over the
set of observation traces, that is O∗. For any σ = o1 · · · ot (t ≥ 0) and s ∈ S , define‖

p(σ | s) 4= Pr(O1 = o1,O2 = o2, ...,Ot = ot | S 1 = s)

with the proviso that p(ε | s) 4= 1 . We note that for any fixed t ≥ 0 and s ∈ S, p(σ|s) defines
a probability distribution as σ ranges over Ot, the set of traces of length t, or t-traces. In other
words, for any fixed t, we have an information hiding system in the sense of Section 3, with S as a
set of states,Ot as a set of observables, a conditional probability matrix p(σ|s) (s ∈ S, σ ∈ Ot) and
π as a prior distribution on states. CallH (t) this system. We have the following error probabilities
of interest (t ≥ 0):

P(t)
e (n) 4

= probability of error after n observations (of t-traces) inH (t) (7)

P(t)
e

4
= lim

n→∞
P(t)

e (n) (8)

Pe
4
= lim

t→∞
P(t)

e . (9)

We will show in the next subsection that the above two limits exist and are easy to compute.
Correspondingly, we have the information leakage quantities of interest (here Psucc = 1 − Pe):

L(t)
+ (n) 4= P(t)

succ(n) −max
s
π(s) L(t)

+

4
= P(t)

succ −max
s
π(s) L+

4
= Psucc −max

s
π(s) .

Multiplicative leakages are defined similarly.

6.2. Results

That the limit (8) exists is an immediate consequence of Theorem 1 applied to H (t). Indeed, let
us denote by ≡(t) the indistinguishability relation on states forH (t), that is, explicitly

s ≡(t) s′ iff for each σ ∈ Ot : p(σ|s) = p(σ|s′) .

Let C(t)
1 , ...,C

(t)
Kt

be the equivalence classes of ≡(t) and let p∗(t)i
4
= maxs∈C(t)

i
π(s). Then we have by

Theorem 1 that

P(t)
e = 1 −

Kt∑
i=1

p∗(t)i . (10)

‖ Or, more formally, p(σ | s) 4= Pr(Oh = o1,Oh+1 = o2, ...,Oh+t−1 = ot | S h = s), for any index h s.t. Pr(S h = s) > 0.
Note that this definition does not depend on the chosen index h, given that the chain is homogeneous. Also, we are
assuming w.l.o.g. here that for each s there is an index h s.t. Pr(S h = s) > 0.

18



Note that, for any fixed t, Corollary 2 carries over toH (t). We now consider the case t → ∞. We
introduce the following fundamental relation.

Definition 6 (Indistinguishability for hmm). The indistinguishability relation on a hmm is de-
fined as

≡
4
=

⋂
t≥0

≡(t) .

Equivalently, s ≡ s′ iff for every σ ∈ O∗, p(σ|s) = p(σ|s′).

It is immediate to check that ≡ is an equivalence relation. Let C1, ...,CK be its equivalence
classes and let p∗i

4
= maxs∈Ci π(s), for i = 1, ...,K.

Proposition 4. The limit (9) is given by Pe = 1 −
∑K

i=1 p∗i .

Proof. First, we note that {≡(t)}t≥0 forms a monotonically non-increasing chain of relations:
≡(0) ⊇≡(1) ⊇≡(2) · · · . To prove this fact, note that, for each t, σ ∈ Ot and s ∈ S, p(σ|s) =∑

o∈O p(σ · o|s). Therefore, s ≡(t+1) s′ implies s ≡(t) s′.
The above fact implies that the sequence {P(t)

e }t≥0 is monotonically non-increasing: indeed, the
finer the equivalence classes of ≡(t), the greater the value of the sum in (10). Therefore, the limit
(9) exists. In order to determine the value of this limit, we reason as follows. Since S is finite and
the chain of sets {≡(t)}t≥0 is monotonically non-increasing, there must exist t0 such that

≡(t0) = ≡(t0+1) = · · · = ≡ .

According to (10) then, from t0 onward the sequence {P(t)
e }t≥0 stabilizes to the value Pe =

1 −
∑K

i=1 p∗i .

The actual computation of Pe, and of the corresponding information leakage quantities, is
therefore reduced to the computation of ≡. Below, we show that this computation can indeed be
performed quite efficiently. We do so by using some elementary linear algebra. Let us introduce
some additional notation. We define the transition matrices Mok ∈ R

m×m, for any ok ∈ O, as
follows††:

Mok (i, j) 4
= Pr(S t+1 = s j,Ot = ok |S t = si)

= F(i, j) ·G(i, k)

where the last equality is justified by equation (6). For any σ = o1 · · · ot, we let Mσ denote
Mo1 × · · · × Mot . Finally, we let ei ∈ R

1×m denote the row vector with 1 in the i-th position and 0
elsewhere and let e 4=

∑m
i=1 ei denote the everywhere 1 vector. The following lemma provides an

alternative characterization of ≡; the lemma is easily proven by induction on the length of σ.

Lemma 4. For eachσ and si ∈ S, p(σ | si) = eiMσeT . Hence si ≡ s j iff for each σ ∈ O∗, eiMσeT =

e jMσeT .

We say a row vector v is orthogonal to a set of column vectors U, written v⊥U, if vu = 0
for each u ∈ U. Also, for any set of vectors U, U⊥ denotes the orthogonal complement of U
given by U⊥ = {v | v⊥U}. It is easily seen that U⊥ is a sub-space of the space of column vectors.

†† Again, due to homogeneity, in the definition we can choose any index t such that Pr(S t = si) > 0.
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Moreover, U ⊆ V implies V⊥ ⊆ U⊥. Of course, the above definitions extend as expected when
exchanging the roles of "row" and "column". We finally note that if U is a vector space, then (·)⊥

is an involution, that is (U⊥)⊥ = U.

Theorem 2. Let B be a basis of the (finite-dimensional) sub-space ofRm×1 spanned by
⋃
σ∈O∗ {MσeT }.

For si, s j ∈ S, si ≡ s j iff (ei − e j) ⊥ B.

Proof. The condition of Lemma 4 can be expressed as

for each σ ∈ O∗ : (ei − e j)MσeT = 0

iff

(ei − e j) ∈ ∩σ{MσeT }⊥ = (∪σ{MσeT })⊥

iff

(ei − e j) ⊥ B .

A basis B of span
( ⋃

σ{MσeT }
)

can be expressed as

B = {MσeT |σ ∈ F } (11)

for a suitable finite, prefix-closed F ⊆ O∗. More precisely, B can be computed by a procedure
that starts with the set B := {eT } and iteratively updates B by joining in the vectors Mo·σeT =

Mo · (MσeT ), with MσeT ∈ B and o ∈ O, that are linearly independent from the vectors already
present in B, until no other vector can be joined in. This procedure must terminate in a number
of steps ≤ m. The set of strings F can be computed alongside with B.

We now briefly discuss the rate of convergence to Pe. We have already seen that P(t0)
e = Pe.

Therefore, there is no advantage, for an attacker wanting to determine ≡, in considering traces of
length greater than t0. The convergence rate for the attacker is hence determined by the matrix of
the systemH (t0). For this reason, it is of practical importance to be able to compute t0. This is in
fact quite an easy task, as stated by the following proposition.

Proposition 5. Let B be a basis of the space spanned by ∪σ{MσeT } and F the corresponding set
of strings, as specified by (11). Assume B and F have been obtained by the algorithm described
above. Then t0 = max{|σ| : σ ∈ F }.

Proof. For any equivalence relation R over S, let the kernel of R be the subspace of R1×m

defined thus

ker(R) 4= span({ei − e j | si R s j}) .

Now, by a reasoning similar to that in the proof of Theorem 2, for any t we have

ker(≡(t)) = (span(∪σ∈Ot MσeT ))⊥ (12)

while, by definition of B and F

ker(≡) = (span(∪σ∈FMσeT ))⊥ . (13)
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Let R, R′ be two equivalence relations of the form ≡ or ≡(t). The above equations imply that siRs j

iff ei − e j ∈ ker(R). Moreover, R ⊆ R′ iff ker(R) ⊆ ker(R′). Thus, the equivalence relations of
interest are completely characterized by their kernels. By Lemma 4, we deduce that for each t,
ker(≡(t)) ⊇ ker(≡(t+1)). From this fact, and using the fact that U ⊆ V implies V⊥ ⊆ U⊥, and that
(U⊥)⊥ = U, we obtain that for each t, span(∪σ∈Ot MσeT ) ⊆ span(∪σ∈Ot+1 MσeT ), hence

ker(≡(t))⊥ = span(∪σ∈Ot MσeT ) = span(∪0≤i≤t ∪σ∈Oi MσeT ) .

Take now t = max{|σ| : σ ∈ F } in the equation above: we obtain

ker(≡(t))⊥ = span(∪0≤i≤t ∪σ∈Oi MσeT ) ⊇ span(∪σ∈FMσeT ) = ker(≡)⊥

hence ker(≡(t)) ⊆ ker(≡), which implies ker(≡(t)) = ker(≡), that is ≡(t) = ≡.
On the other hand, take any t < max{|σ| : σ ∈ F }. Assume by contradiction that ≡(t) = ≡, that

is ker(≡(t)) = ker(≡). By (12) and (13), and using (U⊥)⊥ = U, we obtain that span(∪σ∈Ot MσeT ) =

span(∪σ∈FMσeT ). This implies that there is a string of maximal length in F , say σ0, s.t. Mσ0 eT

can be obtained as a linear combination of vectors MσeT , for σ of length t < |σ0|. But, by
construction of B and F , this cannot be the case.

The practical computation of the rate relative to Pe can be carried out applying Proposition
1 to the system H (t0), which requires one has at hand the conditional probability matrix of the
system. The entries of this matrix are of the form p(σ|s) with σ ∈ Ot0 . The computation of indi-
vidual entries p(σ|s) can be performed quite efficiently, running the so-called Forward-Backward
algorithm on the underlying hmm (see (Rabiner 1989)). Unfortunately, the number of columns
in the matrix, i.e. of traces of length t0, is |O|t0 . Most likely, this makes the exact computation
of the rate impractical for significant systems (say, systems with thousands of states). Forms of
approximations are conceivable to tackle this problem, such as "lumping" the matrix by aggre-
gating sets of columns, which leads to tractable dimensions, while underestimating the rate. We
will not discuss this issue here, though.

7. An example: hiding routing information

We discuss a scenario where messages are routed from a sender to a receiver in a network with
a fixed topology, as can be found for instance in a structured peer-to-peer overlay. Anonymity
protocols such as onion routing (Goldschlag et al. 1998) are designed to protect the identity of the
sender and/or of the receiver in the presence of corrupted nodes. Initially, the routing path from
the sender to the receiver is established randomly. In each exchanged message, nested layers of
encryptions ensure that any intermediate on the path node only gets to know the preceding and
the next node in the path, but not the identity of the original sender and of the final receiver.

We present and analyze a model of this protocol below. We should warn the reader that, for
the sake of presentation, we have chosen to analyze an over-simplified version of the protocol.
For example, we assume that, upon receiving a message, a corrupted node can tell whether the
message pertains to the target sender-receiver conversation, but cannot identify the predecessor
node in the path followed by the message. More powerful forms of eavesdropping can be easily
accommodated. Again, we are interested in the case of re-execution, where, for some reason, the
initiator is forced to establish new paths with the responder several times. We will concentrate on
the asymptotic error probability and leakage, ignoring issues related to the rate of convergence.
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We assume the topology of the network is specified by a nonempty graph G = (V, E). For each
node v ∈ V , we let N(v) denote the set of neighbours of v, that is the set of nodes u for which
an arc {v, u} in E exists; N(v) is always assumed nonempty. Let C ⊆ V represent the subset of
corrupted nodes. We let S 4= V ×V be the set of states of the system and O 4= C∪{∗} be the set of
observables; here c ∈ C means that the message is presently hold by the node c, while ∗ means
no observation other than the elapse of a discrete time interval. What the attacker can observe are
therefore traces like σ in the picture on the right.

s

r

c2

c1 c3

σ = ∗ ∗ c1 c2 ∗ ∗ ∗ ∗ c3 ∗ ∗

We assume the sender and the receiver are chosen at random in-
dependently from each other, and that the sender is always a honest
node (there is no point for the attacker in eavesdropping on corrupted
nodes). This formally means that the first state of the Markov chain
is a random vector S 1 = (S ,R), where S and R are independent ran-
dom variables taking values uniformly in V \ C and V , respectively.
The transitions and the observations of the hidden Markov model are
defined by the following equations, where u, v, r ∈ V , c ∈ C and
s ∈ V \C:

p
(

(u, r) | (v, r)
) 4

=


1
|N(v)| if u ∈ N(v) and v , r

0 if u < N(v) and v , r
p
(

(r, r) | (r, r)
) 4

= 1

p
(

c | (c, r)
) 4

= 1 p
(
∗ | (s, r)

) 4
= 1 .

The above equations define a hidden Markov model, sayM. For any specific topology G, it is
easy to compute the corresponding probability Pe defined by (9), as indicated by Proposition 4.
Recall that Pe is the probability that, after observing n independent executions of the system up
to time t, for n, t → ∞, the attacker fails to correctly guess the pair (s, r) of the true sender and
receiver.

In fact, in order to asses the degree of anonymity provided by the system, it is more convenient
to have at hand the error probabilities for the senders and for the receivers separately. To see how
these probabilities are defined and computed, we examine in detail the case of the sender; the
receiver case is basically the same. Formally, for each σ ∈ Ot and sender s ∈ V \C, let

psend(σ|s) 4= Pr(Ot = σ|S = s) .

For any fixed t, this equation defines a conditional probability matrix, hence an information
hiding system where the states are the senders, i.e. V\C: let us denote by P(t)

e,send the corresponding
asymptotic error probability. The probability we are after is obtained by letting t tend to∞:

Pe,send
4
= lim

t→∞
P(t)

e,send .

Reasoning as we did for Proposition 4, one checks that Pe,send can be computed from the limit
indistinguishability relation as t → ∞, say ≡send. Explicitly, this relation can be defined as s ≡send

s′ iff for each σ ∈ O∗, psend(σ|s) = psend(σ|s′). The next lemma says how ≡send can be computed
starting from the hidden Markov modelM defined above, by a suitable aggregation of the rows
of the basis matrix B. The proof consists of easy manipulations of the transition matrices Mσ and
is omitted. Recall that the states ofM are pairs (u, v), thus e(u,v) denotes the row vector in R1×|V |2
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whose entry corresponding to the element (u, v) is 1, while the others are 0. For each s, we let fs

denote the row vector
∑

(s,v)∈S e(s,v).

Lemma 5. Let B a basis like in the hypotheses of Theorem 2 for the hidden Markov modelM
defined above. For any two senders s and s′, s ≡send s′ iff ( fs − fs′ )⊥ B.

We have applied this setting to a few instances of a grid network, like the one displayed above,
relative to different sizes d of the grid and different sets C of corrupted nodes. Table 1sum-
marizes the outcomes of these experiments. The nodes in the grid are numbered from 1 to d2,
starting from the top left corner and proceeding row-wise from left to right. To avoid end effects,
we make the grid wrap up, i.e. the top and bottom rows are connected together, as well as the
rightmost and leftmost columns. The sets C are chosen so as to give rise to configurations where
no two corrupted nodes are directly connected: we have checked experimentally that these are
the most advantageous for the attacker; otherwise, the relative distance of the corrupted nodes
seems unimportant. Ksend and Krec denote the number of classes of ≡send and of ≡rec, respec-
tively. Moreover, from Corollary 2(2) in Section 4, we know that the asymptotic multiplicative
leakage coincides with the number of classes in the case of uniform distribution. The probability
Pe,send is computed as 1 − Ksend

|V |−|C| , while Pe,rec is computed as 1 − Krec
|V | . Finally, additive leakages

are computed as indicated by Corollary 2(2).
Although a systematic study of anonymous routing protocols is outside the scope of the present

paper, some qualitative considerations can be drawn from these data. If one keeps d fixed and
lets |C| grow, the data are simple to interpret: the error probability goes to 0 and the leakage
gets larger. On the other hand, if one keeps |C| fixed and compares configurations of different
size d, the interpretation becomes less obvious. The leakage tends to increase when moving from
smaller to larger values of d, which is particularly evident from the columns of multiplicative
leakage. This increase occurs barely because, as the number of nodes grows, the number of in-
distinguishability classes tends to grow as well: all this means is just that a large system tends
to leak more information than a small one. Concerning error probability, which is supposed to
measure the "absolute" resistance of a system, the data seem to partially contradict the intuition
that the more nodes in a network, the stronger the guarantee of anonymity. Indeed, it may happen
that the error probability decreases when moving from smaller to larger values of d. Also, the
receiver seems more vulnerable than the sender from the point of view of anonymity. At the mo-
ment we have no explanation to offer for these phenomena‡‡. Their full understanding certainly
requires a more systematic study of the anonymous routing protocols.

8. Conclusion and further work

We have characterized the asymptotic behaviour of error probability, and information leakage in
terms of indistinguishability in a scenario of one-try attacks after repeated independent, noisy
observations. We have first examined the case in which each execution gives rise to a single

‡‡ Heuristically, the first phenomenon seems to be connected with the fact that, as d grows, the number of indistin-
guishability classes may grow faster than the number of nodes, because more and more observables (traces) become
available.
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d C Ksend
= L×,send

Krec
= L×,rec

Pe,send Pe,rec L+,send L+,rec

3 {1} 2 4 0.75 0.56 0.12 0.33

3 {1, 5} 4 9 0.43 0 0.43 0.89

3 {2, 4, 6, 8} 5 9 0 0 0.8 0.89

4 {1} 4 9 0.73 0.44 0.2 0.5

4 {1, 6} 7 12 0.5 0.25 0.43 0.69

4 {2, 5, 7, 10} 12 16 0 0 0.92 0.94

5 {1} 5 15 0.79 0.4 0.17 0.56

5 {1, 7} 13 25 0.43 0 0.52 0.96

5 {2, 6, 8, 12} 21 25 0 0 0.95 0.96

6 {1} 10 10 0.71 0.72 0.26 0.25

6 {1, 8} 19 36 0.44 0 0.53 0.97

6 {2, 7, 9, 14} 32 36 0 0 0.97 0.97

Table 1. Sender and receiver anonymity for several instances of a grid network.

observation, then extended our results to the case where each state traversed during an execution
induces one observation.

In the future, we would like to systematically characterize achievable rates of convergence
given an error probability threshold, thus generalizing Proposition 3. It would also be natural
to generalize the present one-try scenario to the case of k-tries attack, for k ≥ 2. Experiments
and simulations with realistic anonymity protocols may be useful to asses at a practical level the
theoretical results of our study. For example, we believe that hmm’s are relevant to security in
peer-to-peer overlays. We would also like to clarify the relationship of our model with the notion
of probabilistic opacity (Bérard et al. 2010), and with the huge amount of work existing on covert
channels (see e.g. (Mantel and Sudbrock 2009) and references therein).

Another interesting research direction concerns the nature of the guarantees provided by error
probability related metrics. These quantities provide a synthetic way to express the security of
a system under a specific attack scenario. However, they are tightly connected mainly with the
number of indistinguishability classes, which may be inadequate in some cases. For instance,
in an anonymity protocol characterized by a high error probability (or small leakage), it might
well be the case that an individual user belongs to a singleton class, hence being totally exposed
to eavesdropping. For this reason, one would like to devise a framework where the analysis can
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be conducted both at a quantitative level (how much is leaked) and at a qualitative one (what is
leaked).
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