3,600 research outputs found

    Solution for a local straight cosmic string in the braneworld gravity

    Get PDF
    In this work we deal with the spacetime shaped by a straight cosmic string, emerging from local gauge theories, in the braneworld gravity context. We search for physical consequences of string features due to the modified gravitational scenario encoded in the projected gravitational equations. It is shown that cosmic strings in braneworld gravity may present significant differences when compared to the general relativity predictions since its linear density is modified and the deficit angle produced by the cosmic string is attenuated. Furthermore, the existence of cosmic strings in that scenario requires a strong restriction to the braneworld tension: λ3×1017\lambda \geq 3 \times 10^{-17}, in Planck units.Comment: 7 pages, 3 figure

    Dark Matter and Dark Energy Interactions: Theoretical Challenges, Cosmological Implications and Observational Signatures

    Full text link
    Models where Dark Matter and Dark Energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.Comment: 98 pages, submitted to Reports on Progress in Physic

    Darth Fader: Using wavelets to obtain accurate redshifts of spectra at very low signal-to-noise

    Get PDF
    We present the DARTH FADER algorithm, a new wavelet-based method for estimating redshifts of galaxy spectra in spectral surveys that is particularly adept in the very low SNR regime. We use a standard cross-correlation method to estimate the redshifts of galaxies, using a template set built using a PCA analysis on a set of simulated, noise-free spectra. Darth Fader employs wavelet filtering to both estimate the continuum & to extract prominent line features in each galaxy spectrum. A simple selection criterion based on the number of features present in the spectrum is then used to clean the catalogue: galaxies with fewer than six total features are removed as we are unlikely to obtain a reliable redshift estimate. Applying our wavelet-based cleaning algorithm to a simulated testing set, we successfully build a clean catalogue including extremely low signal-to-noise data (SNR=2.0), for which we are able to obtain a 5.1% catastrophic failure rate in the redshift estimates (compared with 34.5% prior to cleaning). We also show that for a catalogue with uniformly mixed SNRs between 1.0 & 20.0, with realistic pixel-dependent noise, it is possible to obtain redshifts with a catastrophic failure rate of 3.3% after cleaning (as compared to 22.7% before cleaning). Whilst we do not test this algorithm exhaustively on real data, we present a proof of concept of the applicability of this method to real data, showing that the wavelet filtering techniques perform well when applied to some typical spectra from the SDSS archive. The Darth Fader algorithm provides a robust method for extracting spectral features from very noisy spectra. The resulting clean catalogue gives an extremely low rate of catastrophic failures, even when the spectra have a very low SNR. For very large sky surveys, this technique may offer a significant boost in the number of faint galaxies with accurately determined redshifts.Comment: 22 pages, 15 figures. Accepted for publication in Astronomy & Astrophysic

    Optimising Spectroscopic and Photometric Galaxy Surveys: Efficient Target Selection and Survey Strategy

    Full text link
    The next generation of spectroscopic surveys will have a wealth of photometric data available for use in target selection. Selecting the best targets is likely to be one of the most important hurdles in making these spectroscopic campaigns as successful as possible. Our ability to measure dark energy depends strongly on the types of targets that we are able to select with a given photometric data set. We show in this paper that we will be able to successfully select the targets needed for the next generation of spectroscopic surveys. We also investigate the details of this selection, including optimisation of instrument design and survey strategy in order to measure dark energy. We use color-color selection as well as neural networks to select the best possible emission line galaxies and luminous red galaxies for a cosmological survey. Using the Fisher matrix formalism we forecast the efficiency of each target selection scenario. We show how the dark energy figures of merit change in each target selection regime as a function of target type, survey time, survey density and other survey parameters. We outline the optimal target selection scenarios and survey strategy choices which will be available to the next generation of spectroscopic surveys.Comment: 16 pages, 22 figures, accepted to MNRAS in dec 201

    Static Domain Wall in the Braneworld gravity

    Get PDF
    In this paper we consider a static domain wall inside a 3-brane. Differently of the standard achievement obtained in General Relativity, the analysis performed here gives a consistency condition for the existence of static domain walls in a braneworld gravitational scenario. It is also shown the behavior of the domain wall gravitational field in the newtonian limit.Comment: 11 pages, no figures, accepted for publication in EPJ

    Cosmological systematics beyond nuisance parameters: form-filling functions

    Get PDF
    In the absence of any compelling physical model, cosmological systematics are often misrepresented as statistical effects and the approach of marginalizing over extra nuisance systematic parameters is used to gauge the effect of the systematic. In this article, we argue that such an approach is risky at best since the key choice of function can have a large effect on the resultant cosmological errors. As an alternative we present a functional form-filling technique in which an unknown, residual, systematic is treated as such. Since the underlying function is unknown, we evaluate the effect of every functional form allowed by the information available (either a hard boundary or some data). Using a simple toy model, we introduce the formalism of functional form filling. We show that parameter errors can be dramatically affected by the choice of function in the case of marginalizing over a systematic, but that in contrast the functional form-filling approach is independent of the choice of basis set. We then apply the technique to cosmic shear shape measurement systematics and show that a shear calibration bias of |m(z)| ≲ 10−3 (1 +z)0.7 is required for a future all-sky photometric survey to yield unbiased cosmological parameter constraints to per cent accuracy. A module associated with the work in this paper is available through the open source icosmo code available at http://www.icosmo.or

    Positive tension 3-branes in an AdS5AdS_{5} bulk

    Full text link
    In this work, we review and extend the so-called consistency conditions for the existence of a braneworld scenario in arbitrary dimensions in the Brans-Dicke (BD) gravitational theory. After that, we consider the particular case of a five-dimensional scenario which seems to have phenomenological interesting implications. We show that, in the BD framework, it is possible to achieve necessary conditions pointing to the possibility of accommodating branes with positive tensions in an AdS bulk by the presence of the additional BD scalar field, avoiding in this way the necessity of including unstable objects in the compactification scheme. Furthermore, in the context of time variable brane tension, it is shown that the brane tension may change its sign, following the bulk cosmological constant sign.Comment: 15 pages, new version to appear in JHE

    Quasinormal modes for the charged Vaidya metric

    Full text link
    The scalar wave equation is considered in the background of a charged Vaidya metric in double null coordinates (u,v)(u,v) describing a non-stationary charged black hole with varying mass m(v)m(v) and charge q(v)q(v). The resulting time-dependent quasinormal modes are presented and analyzed. We show, in particular, that it is possible to identify some signatures in the quasinormal frequencies from the creation of a naked singularity.Comment: 4 pages. Prepared for the proceedings of the Spanish Relativity meeting (ERE2010), Granada, Spain, September 6-10, 201

    PP-Wave Light-Cone Free String Field Theory at Finite Temperature

    Full text link
    In this paper, a real-time formulation of light-cone pp-wave string field theory at finite temperature is presented. This is achieved by developing the thermo field dynamics (TFD) formalism in a second quantized string scenario. The equilibrirum thermodynamic quantities for a pp-wave ideal string gas are derived directly from expectation values on the second quantized string thermal vacuum. Also, we derive the real-time thermal pp-wave closed string propagator. In the flat space limit it is shown that this propagator can be written in terms of Theta functions, exactly as the zero temperature one. At the end, we show how supestrings interactions can be introduced, making this approach suitable to study the BMN dictionary at finite temperature.Comment: 27 pages, revtex
    corecore