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Abstract In this paper we consider a static domain wall
inside a 3-brane. Different from the standard achievement
obtained in General Relativity, the analysis performed here
gives a consistency condition for the existence of static
domain walls in a braneworld gravitational scenario. Also
the behavior of the domain wall’s gravitational field in the
newtonian limit is shown.

1 Introduction

Braneworld models have been thoroughly studied in con-
temporaneous theoretical physics. This was stimulated by
the seminal work of Randall–Sundrum [1,2]. For instance,
in Ref. [1] a possible explanation is provided for the hier-
archy problem of particle physics. These models are par-
tially inspired by results from string theory that necessarily
require the existence of extra dimensions. The braneworld
picture may be understood as an effective scenario of the
Horava–Witten framework [3], within a warped spacetime.
It is interesting to analyze the physical implications of the
extra dimensions, whose consequences might include par-
ticle physics effects, new astrophysics observables [4], and
some cosmological modifications from the standard model.
For example, the dark matter problem, raised in the realm
of astrophysics and in the cosmology setup, requires parti-
cles with no electromagnetic and strong interactions. This
last problem can be approached via braneworld scenarios, in
which dark matter can be interpreted as massive gravitons
from extra dimensions [5,6]. Nevertheless, there are many
other situations where braneworlds can evoke new insights
as regards physical predictions. Some of those situations are
the topological defects in cosmology. Those defects may be

a e-mail: mabdalla@ift.unesp.br
b e-mail: pablofisico@ift.unesp.br
c e-mail: hoff@feg.unesp.br; hoff@ift.unesp.br

generated by means of one or several spontaneous symmetry
breaking terms in the lagrangian of some scalar field models.
In this process, structures as domain walls and cosmic strings
may be created at a cosmological scale [7,8]. There are sev-
eral works studying the gravitational properties of domain
walls. Some exhaustive achievements were obtained for the
domain wall behavior in the context of the usual theory of
general relativity [9–11].

A relevant result, which we are particularly interested in,
shows that thick and static domain walls are incompatible
with general relativity [12]. It is an appealing and strong
result constituting a benchmark in the study of gravitational
effects of domain walls. In this work we shall revisit this
result in the light of braneworld gravity. In fact, the study
of domain walls’ gravitational effects within the scope of
braneworlds was previously considered [13–17]. Particularly
in [13,14], the authors assume a conformal bulk metric,
bringing about no significant differences for the domain wall
gravitational field from the usual four-dimensional Einstein
equation.

Assuming that general relativity holds in the whole five-
dimensional bulk, and the four-dimensional brane is endowed
with Z2 symmetry, one can recover the gravitational equation
on the brane in a suitable and precise way. The result stands
for corrections coming from the extra dimension (encoded in
the Weyl tensor), as well as some modifications proportional
to the square of the stress tensor [18,19]. For the specific case
investigated in this paper, the contributions from the square
of the stress tensor are identically zero, and all the modi-
fications rest upon the Weyl tensor term. As we shall see,
the Weyl term, under very general assumptions, is respon-
sible for allowing the existence of static domain walls in
the braneworld. This result is in acute contrast with the one
obtained within the usual general relativity.

This paper is organized as follows: in Section 2, we briefly
review the main steps leading to an effective (and modified)
gravitational field equation on the brane. Going further, we
show that static domain walls are allowed in the braneworld
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gravity. In the final section we conclude, giving a simple
physical interpretation and pointing out some perspectives
in this branch of research.

2 Braneworld gravity

As previously mentioned, the extra-dimension model con-
sidered here is to a quite large extent based on the Randall–
Sundrum models (mostly [2]). Therefore, we consider a 3-
brane, in which the standard model particles are localized,
embedded in a five-dimensional bulk with a Z2 symmetric
fifth dimension. That scenario provides a distinct description
for the gravitational dynamics. To achieve the gravitational
equations on the brane, it is taken for granted that Einstein’s
field equations hold in five dimensions. Then, through the
Gauss–Codazzi formalism and Israel matching conditions it
is possible to obtain the gravitational equations [18,20] relat-
ing the intrinsic brane quantities (metric gμν and Einstein’s
Gμν tensors) with the brane stress-energy tensor τμν :

Gμν = −�gμν + κ2
4 τμν + κ4

5 �μν − Eμν, (1)

where � = κ2
5
2 (�5+κ2

5 λ2
b/6) is an effective brane cosmolog-

ical constant (determined by the bulk cosmological constant
�5 and the intrinsic brane tension λb). These equations are
closely related with the Einstein field equations; the distinc-
tion lies with the two last terms on the right-hand side. The
tensor �μν is given by

�μν = −1

4
τσ
μ τνσ + 1

12
ττμν + 1

8
qμνταβταβ − 1

24
qμντ

2,

(2)

which is fully dependent on the brane stress-energy tensor.
Otherwise, the term Eμν (the so-called Weyl fluid) is a non-
local term, depending on the bulk’s Weyl tensor. As we shall
see, it is this tensor that is responsible for and enables the
existence of static domain walls in braneworld gravity.

3 Static domain walls

Let us start by outlining the basic formalism describing
domain walls. These structures can be generated by a scalar
field lagrangian like

L = 1

2
∂μφ∂μφ − λ2(φ2 − η2)2. (3)

It is the origin of a topological anomaly on the transition
layer between the two vacuum states associated with the
potential of the above lagrangian. If we consider a depen-
dence φ = φ(x) (where x is parameterizing one of the spatial
dimensions) the classical field equations give

φ(x) = η tanh(
√

2ληx). (4)

By assuming the spacetime nearly Minkowskian, we
determine the stress-energy tensor for the scalar field
lagrangian (3):

Tμν = ∂μφ∂νφ − ημν

[
1

2
∂αφ∂αφ − λ2(φ2 − η2)2

]
. (5)

For the scalar field given by (4), we compute the stress-energy
components, so that we rewrite the stress-energy tensor as

T μ
ν = σ(x)(δμ

ν + ξμξν), (6)

where ξμ is a unit spacelike vector orthogonal to the wall
surface and

σ(x) = 2λ2η4
[
cosh

(√
2ληx)

)]−4
. (7)

The above relations show how the energy for the scalar field
is distributed in the spacetime. The function σ(x) has a peak
centered at x = 0, characterizing the domain wall, whose
thickness is determined by the relation δ ∼ 1

λη
.

Many works dealing with domain walls in general rela-
tivity consider the thin-case limit, utilizing the Dirac delta
function to localize the domain wall [9,10]. In this work, we
consider a thick domain wall where the energy distribution
in spacetime is accounted for by (6) along with (7).

As seen in the expression (6), the contraction of ξμ with
T μ

ν is null. Therefore, contracting Eq. (5) with ξμ gives

ξμ∂μφ∂νφ − ξν

[
1

2
∂μφ∂μφ − λ2(φ2 − η2)2

]
= 0. (8)

The above expression shows that ∂νφ is proportional to ξν

and therefore its a hypersurface orthogonal vector implying
the relation ∇μξν −∇νξμ = 0. By comparing the expressions
for T μ

ν , (5), and (6), we obtain the relation

σ = 2λ2(φ2 − η2)2. (9)

Taking the partial derivative in the above equation, we con-
clude that

∂ασ = N ξα, (10)

where N is a scalar. The energy conservation condition over
T μ

ν in Eq. (6) gives

∇νσ + ∇μξμξν + σ∇μξμ + σξμ∇μξν = 0. (11)

By contracting the above equation with ξν and taking into
account that here we have a unit vector (which implies
ξν∇μξν = 0), we have
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∇μξμ = 0. (12)

Writing the Riemann tensor as

∇α∇βξμ − ∇β∇αξμ = Rμ
λαβξλ, (13)

we use the expression (12) in the above equation to obtain a
relation for the Ricci tensor:

Sαβ Sαβ + Rαβξαξβ = 0, (14)

where

Sαβ ≡ ∇αξβ. (15)

Braneworld gravitation, given by means of the expression
(1), allows us to determine an expression for the Ricci tensor.
Meanwhile, first we compute the �μν (2) term, by means of
the stress-energy tensor for the domain wall spacetime. It can
be readily verified that the result is �μν = 0 and therefore
we only have

Rμν − 1

2
gμν R = 8πTμν − �gμν − Eμν. (16)

Combining this relation with the expression (14), we find
the consistency condition for the static domain walls in
braneworld gravitation,

Sαβ Sαβ + 12πσ = � + Eμνξ
μξν. (17)

Now, we perform an analysis of this consistency condition,
in two parts.
A. The case of general relativity

As a first step, we consider the absence of the cosmolog-
ical constant term as well as the contribution from the extra
dimension Eμνξ

μξν . In this case, Eq. (17) becomes

Sαβ Sαβ + 12πσ = 0, (18)

that is, we recover the consistency condition from standard
general relativity without cosmological constant [12]. Once
σ > 0, it is necessary that Sαβ Sαβ < 0 to satisfy the condition
for the existence of static domain walls in general relativity.

However, for the product Sαβ Sαβ to be negative valued,
it is necessary that Sαβ have complex eigenvalues [21]. This
fact implies a pair of complex conjugate eigenvectors. How-
ever, we know that Sαβ has at least two real eigenvalues
(because Sα

α = 0 and Sαβξα = 0).
The condition of staticity for the domain wall implies the

existence of a timelike hypersurface orthogonal Killing vec-
tor. The Lie derivative over the stress-energy tensor (6) along
the Killing vector field vanishes, implying

LK (3σ) = 0 → K α∂ασ = 0 (19)

and

K μ∇μξβ = ξμ∇μKβ. (20)

Taking into account Eq. (10) in (19), we have

ξα Kα = 0. (21)

Hypersurface orthogonality implies

K[α ∇γ K β] = 0, (22)

or

ξα K[α ∇γ K β] = 0. (23)

By means of Eqs. (20) and (21), we obtain

Kβ K α∇αξγ − Kγ K α∇αξβ = 0, (24)

or, contracting with K β ,

K α Sαγ = ρKγ , (25)

where ρ = (K α K β∇α Kβ)/K β Kβ .
Equation (25) shows that K α is an eigenvector of Sαγ .

This fact precludes the existence of a pair of complex con-
jugate eigenvectors for Sαγ ; thus the consistency condition
(18) is not satisfied and models of static domain walls are
incompatible with general relativity [12].

It is noteworthy that the authors in [12] have not consid-
ered the influence of the cosmological constant on Einstein’s
equations to obtain this result (perhaps because the cosmo-
logical constant was just a theoretical hypothesis when that
article was written). If now we consider the influence of the
cosmological constant, a new condition arises:

Sαβ Sαβ + 12πσ = �. (26)

As both terms on the left-hand side of the above equation are
positive, it is necessary that both have the same order of the
cosmological constant, or λ2η4 ∼ �, leading to a very large
thickness for the domain wall.
B. The braneworld case

The relation (17) obtained above constrains the Weyl fluid
term. In order to clarify the influence of the Weyl fluid on the
domain wall, we write it here in a cosmological fluid form:

Eμν = −k4
[

U (uμuν − 1

3
hμν) + Pμν + Q(μuν)

]
, (27)

where we decompose the metric tensor by means of a 4-
velocity field (gμν = hμν +uμuν). U = −k−4 Eμνuμuν rep-

resents the dark radiation component, Pμν = −k−4[hα
(μhβ

ν)−
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1
3 hμνhαβ ]Eαβ is the anisotropic pressure and Qμ = −k−4hα

μ

Eαβuβ the energy flux associated with the Weyl dark fluid.
The staticity condition for the domain wall spacetime

requires a null energy flux. Considering the case of a pla-
nar domain wall, to simplify the analysis, Sμν vanishes and
the constraint (17) becomes

12πσ = Eμνξ
μξν. (28)

Unlike the consistency condition resulting from general rel-
ativity, (14), Eqs. (17) and (28) from the braneworld scenario
are not necessarily in conflict with the presence of static
domain walls. Those relations restrain just the Weyl fluid
components along the transversal direction to the domain
wall. In terms of dark fluid components, Eq. (28) gives

Pμνξ
μξν = 1

3
U (x) − 12πk−4σ(x). (29)

Plugging this relation into (30), we obtain

Eμν = −k4
[

U (uμuν − 1

3
wμν)

+12πk−4σ(x)ξμξν + wα
μ Pαν

]
, (30)

where wμν is orthogonal to uμ and ξμ, these being related
by (gμν = wμν + uμuν − ξμξν).

Let us analyze the immediate consequences of this model.
For a stress-energy tensor of the form T ν

μ = diag(ρ − P1 −
P2 − P3), the newtonian limit over Einstein’s equations give

∇2φ = 4π(ρ + P1 + P2 + P3). (31)

The usual attractive matter distribution in spacetime, in the
newtonian limit, is described by Poisson’s equation, ∇2φ =
4πρ, where the pressure terms are neglected. In that model,
taking the diagonal contribution of dark fluid components
together with the domain wall stress-energy tensor, we obtain

∇2φ = 4π(2k4U − σ). (32)

In the absence of dark fluid components, we recover the result
of Einstein’s gravitation in the newtonian limit [9], in which
the domain wall exhibits a repulsive gravitational force over
test particles. Nevertheless, in the braneworld scenario, the
Weyl fluid brings other possibilities for the domain wall grav-
itation. Depending on the value for the dark fluid components,
the wall can produce either an attractive or a repulsive grav-
itational field, or, in a fine tuning, even a null gravitational
influence.

4 Final remarks

The main result of this paper is that we have shown that the
braneworld picture can have static domain walls, although
general relativity prohibits these structures. Also, we see that
static domain walls within the braneworld context can have
different properties, like an attractive gravitational field. In
fact, it is well known that domain walls can be used to dis-
tinguish between modified gravity theories and general rela-
tivity [22].

An interesting result of the domain wall gravitation in
braneworld is that the stress-energy tensor of the wall does
not have any extra influence over the gravitational dynam-
ics if compared with Einstein’s gravity. It occurs because
the term �μν on the right-hand side of (1) vanishes for the
domain wall stress-energy tensor. The unique extra contribu-
tion performed by the braneworld model is due to the Weyl
fluid term. Meanwhile, if we consider a conformal metric
for the bulk spacetime, the Weyl tensor vanishes, as does the
Weyl fluid term in Eq. (1). In that case, we recover the result
of [13,14], where there is no difference between Einstein’s
gravity and braneworld gravity for the domain wall space-
time. In the case of general relativity, to probe the inconsis-
tency of static domain walls [12] an energy distribution is
considered over the nearly Minkowski spacetime, and static-
ity of the spacetime is assumed for the domain wall. In this
way, it is reasonable to expect that the system no longer holds
on to Minkowski spacetime, since in fact we do have a gravi-
tational source. In the braneworld context, however, the dark
fluid offsets the influence of the stress-energy of the domain
wall in such a manner that it becomes possible that a static
domain wall appears in this context.

Let us finalize by observing that in this work we have
implemented the so-called brane-based formalism, in which
the 3-brane is localized on a point of extra dimension and,
by means of Gauss–Codazzi equations and junction con-
ditions, it is possible to obtain the brane’s effective grav-
ity. Such an approach leaves undetermined the bulk contri-
bution over braneworld gravitation (encoded by means of
the dark fluid term in Eq. (30)). That indeterminacy over
the Weyl fluid form allows us to constrain some compo-
nents, so that the staticity condition is satisfied for the exis-
tence of static domain walls in braneworld scenarios. There-
fore, this method restricts the bulk gravitation. There is
another approach in which we firstly determine the bulk
metric properties, the so-called bulk-based formalism. For
a spherically vacuum bulk spacetime, a generalization of the
Birkhoff theorem [23] states that the metric bulk represents
a Schwarzschild–AdS spacetime. For this case, a moving
brane in the bulk represents an expanding universe. Taking
a bulk Schwarzschild–AdS metric, it was demonstrated [5]
that the Weyl fluid components behave as follows: the dark
pressure term is null, while the dark radiation (associated
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with the bulk black hole mass) is fairly constant. Therefore,
in view of Eqs. (28) and (29), we conclude that static domain
walls are incompatible with the metrics of Schwarzschild–
AdS type for the bulk, since the staticity condition cannot be
fulfilled in this case.
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