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ABSTRACT

Context. Accurate determination of the redshifts of galaxies comes from the identification of key lines in their spectra. Large sky
surveys, and the sheer volume of data they produce, have made it necessary to tackle this identification problem in an automated and
reliable fashion. Current methods attempt to do this with careful modelling of the spectral lines and the continua, or by employing a
flux/magnitude or a signal-to-noise cut to the dataset in order to obtain reliable redshift estimates for the majority of galaxies in the
sample.
Aims. In this paper, we present the Darth Fader algorithm (denoised and automatic redshifts thresholded with a false detection rate),
which is a new wavelet-based method for estimating redshifts of galaxy spectra. Automated, simple, and largely empirical, we high-
light how the Darth Fader algorithm performs in the very low signal-to-noise regime, and demonstrate its effectiveness at removing
catastrophic failures from the catalogue of redshift estimates.
Methods. We present a new, nonparametric method for estimating and removing the continuum in noisy data that requires no a priori
information about the galaxy properties. This method employs wavelet filtering based on a tuneable false detection rate (FDR) thresh-
old, which effectively removes the noise in the spectrum, and extracts features at different scales. After removal of the continuum, the
galaxy spectra are then cross-correlated with the eigentemplates, and a standard χ2-minimisation used to determine the redshift of the
spectrum. FDR filtering is applied to the spectra a second time to determine the number of spectral features in each galaxy spectrum,
and those with fewer than six total features are removed from the catalogue as we are unlikely to obtain a reliable and correct estimate
of the redshift of such spectra.
Results. Applying our wavelet-based cleaning algorithm on a simulated testing set, we can successfully build a clean catalogue in-
cluding extremely low signal-to-noise data (S/N = 2.0), for which we are able to obtain a 5.1% catastrophic failure rate in the redshift
estimates (compared with 34.5% prior to cleaning). We also show that for a catalogue with uniformly mixed signal-to-noise ratios
between 1.0 and 20.0, with realistic pixel-dependent noise, it is possible to obtain redshifts with a catastrophic failure rate of 3.3%
after cleaning (as compared to 22.7% before cleaning). Whilst we do not test this algorithm exhaustively on real data, we present
a proof of concept of the applicability of this method to real data, showing that the wavelet filtering techniques perform well when
applied to some typical spectra from the Sloan Digital Sky Survey archive.
Conclusions. The Darth Fader algorithm provides a robust method for extracting spectral features from very noisy spectra: spectra
for which a reliable redshift cannot be measured are automatically identified and removed from the input data set. The resulting
clean catalogue, although restricted in number, gives an extremely low rate of catastrophic failures, even when the spectra have a
very low S/N. For very large sky surveys, this technique may offer a significant boost in the number of faint galaxies with accurately
determined redshifts.

Key words. methods: data analysis – techniques: spectroscopic – galaxies: distances and redshifts – surveys

1. Introduction

The simplest method for estimating the redshift of a galaxy spec-
trum is by visual inspection, however, large sky surveys are pro-
viding astronomers with increasingly large datasets. The sheer
number of spectra being obtained in these surveys make it nec-
essary to make use of automated algorithms to obtain accurate
information, as well as sophisticated techniques for dealing with
the presence of noise; something which is increasingly important
for distant and dimmer sources.

Traditional methods for automated estimation of the red-
shifts of galaxy spectra have primarily been reliant upon tem-
plate matching with cross-correlations (Tonry & Davis 1979;
Glazebrook et al. 1998; Aihara et al. 2011) or – and sometimes
in conjunction with – the matching of spectral lines (Kurtz &
Mink 1998; Garilli et al. 2010; Stoughton et al. 2002).

Spectral line matching methods involve the use of spectra
with a high enough signal-to-noise ratio to detect at least one
emission line above a predefined threshold. With multiple emis-
sion lines, it is a task of matching the respective rest frame wave-
lengths of lines such as Hα and the [O III] doublet, to their re-
spective redshifted counterparts. When faced with just a single
emission line, assuming it to be Hα or [O II] 3727 Å is a vi-
able option for spectroscopic redshift determination of emission
line galaxies (since one of these is usually, but not always, the
strongest feature; Le Fèvre et al. 1995, 2005). In such cases,
degeneracies on the lines may potentially be resolved with the
inclusion of photometric data. This type of approach is used in
the SDSS Early Data Release (Stoughton et al. 2002).

Template matching methods for redshift estimation involve
a “test set” – a catalogue of galaxy spectra with unknown red-
shifts – being matched to a set of template spectra initially at zero
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redshift (“a template set”). The template spectra are matched to
the data, typically using a χ2 test or maximum likelihood esti-
mator to determine the shift in wavelength between the template
and the galaxy spectrum, and hence the redshift of that galaxy.
Templates may come from simulated or semi-empirical spectra
based on sophisticated modelling, local galaxy spectra whose
redshifts are small and precisely known, or from a subset of high
signal-to-noise spectra within the survey itself with redshifts that
can be confidently identified.

Cross-correlation methods such as that described by
Glazebrook et al. (1998) use a discrete Fourier transform (DFT)
to correlate a template spectrum with a galaxy spectrum allowing
the shift of the template spectrum (and thus redshift) to become
a free parameter. Cross-correlation methods are convenient be-
cause they can be computed as a simple multiplication in Fourier
space between the template and galaxy spectra, resulting in eas-
ier and faster computation than performing the same procedure
in real space. These kinds of cross-correlation methods, how-
ever, require the spectra to be free of continuum in order to cor-
rectly correlate line features, with the presence of lines being
a stronger constraint for redshift estimation than the shape of
the continuum. Failure to subtract the continuum could result
in erroneous cross-correlations since spectra with similar con-
tinua – but different lines – can give stronger correlations than
those with different continua but similar lines.

Currently, continua have to either be modelled from popula-
tion synthesis models (Bruzual & Charlot 2003; Panuzzo et al.
2007), requiring a priori knowledge of galactic properties and
physics, or they are computed from feature-deficient galactic
spectra of a similar continuum type, which again requires the
a priori knowledge of how to identify and group galaxies which
are of a similar type (Koski & Osterbrock 1976; Costero &
Osterbrock 1977). Polynomial-fitting/statistical averaging meth-
ods are also frequently used when the noise is small enough so
as not to conceal the continuum, or where denoising has already
been employed, as in Stoughton et al. (2002); SubbaRao et al.
(2002). In the very low signal-to-noise (S/N) limit, it becomes
exceedingly difficult to pinpoint exactly where the continuum
lies, and polynomial fitting is not ideal.

In this paper, we introduce a new wavelet-based method that
can isolate the continuum of a spectrum without having to defer
to any knowledge of galaxy properties or physics, and that can
operate at low S/N. We demonstrate on simulated data that this
method performs well in both the low and high S/N regimes.
Using a standard cross-correlation method for estimating the
redshifts of galaxies, we demonstrate that an additional wavelet
filtering to extract important features in each spectrum allows us
to derive a selection criterion for galaxies for which we are able
to accurately determine a redshift. Together this allows the Darth
Fader (denoised and automatic redshifts thresholded with a false
detection rate) algorithm to effectively clean our galaxy cata-
logue by removing catastrophic failures, resulting in a galaxy
redshift catalogue with a guaranteed high success rate, and al-
lowing us to accurately and confidently determine the redshifts
of galaxies even in the very low S/N regime. This will be use-
ful in large photometric surveys, such as the upcoming Euclid
survey (Refregier et al. 2010; Laureijs et al. 2011), as the cali-
bration of photometric redshifts requires spectroscopic redshift
information with a very low incidence of catastrophic failures.

This paper is organised as follows. In Sect. 2, we describe in
detail the cross-correlation method used for redshift estimation.
In Sect. 3, we briefly describe the construction of our datasets.
In Sect. 4, we describe our wavelet-based continuum subtrac-
tion method, and the selection criteria for cleaning the catalogue.

In Sect. 5, we show results for various S/Ns, using wavelength-
independent white-Gaussian noise, and a mixed S/N catalogue
with non-stationary (pixel dependent) Gaussian noise, and com-
pare the proportion of catastrophic failures in cleaned catalogues
to that obtained using the full spectral catalogue. In Sect. 6, we
demonstrate the potential applicability of this software to real
data. We demonstrate successful feature extraction on several
real spectra obtained from the SDSS data archive. Lastly, in
Sect. 7 we summarise the key features of the Darth Fader algo-
rithm, and identify potential future applications of the algorithm
and the methods involved.

2. Redshift estimation by cross-correlation

To estimate galaxy redshifts, we employ a cross-correlation
method similar to that described by Glazebrook et al. (1998).
This method involves a cross-correlation of test galaxy spectra
at unknown redshift with template spectra.

We assume that any test spectrum S
′

λ may be represented as
a linear combination of template spectra Tiλ,

S
′

λ =
∑

i

ai Tiλ, (1)

where each template spectrum is normalised according to∑
λ

T 2
λ = 1. (2)

If we choose to bin our spectra on a logarithmic wavelength axis,
redshifting becomes proportional to a translation,

∆ = log (1 + z)

= log
(
λ observed

)
− log

(
λ rest frame

)
. (3)

The estimate of the goodness-of-fit between the template, now
allowed to shift along the wavelength axis, and the test spec-
trum, at an unknown redshift, can be found by computing the
minimum distance via a standard χ2, where the previous coeffi-
cients ai are now dependent upon redshift through ∆,

χ2(∆) =
∑
λ

w2
λ

σ2
λ

[
S λ −

∑
i

ai(∆) Ti(λ+∆)

]2
. (4)

We can obtain the values of the expansion coefficients, ai, by
maximising Eq. (4) with respect to ai. Following the prescrip-
tion in Glazebrook et al. (1998), we take the weighting function,
wλ, and the normally distributed errors, σλ, to be wavelength in-
dependent and constant, which gives

ai(∆) =

∑
λ S λ Ti(λ+∆)∑
λ T 2

i(λ+∆)

· (5)

The numerator in Eq. (5) is simply the cross-correlation of the
galaxy spectrum with the ith template spectrum. Substituting
back into Eq. (4), we obtain

χ2(∆) ∝
∑
λ

[
S 2
λ −

∑
i

a2
i (∆) T 2

i(λ+∆)

]
. (6)

For a large test catalogue that includes a variety of galaxy types,
a large number of templates is needed to ensure the best match-
up between template and test spectra. To use all of them in
the cross-correlation would be excessively time-consuming. If it
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were possible to reduce the number of templates whilst still re-
taining most of the information content of these templates then
we can render the method more practical.

Principal component analysis (PCA) is a simple tool that al-
lows us to do just that: to reduce the dimensionality of this prob-
lem by extracting the most important features from our set of
template spectra, the principal components. The general proce-
dure involves the construction and subsequent diagonalisation
of a correlation matrix to find eigenvectors and eigenvalues. It
is possible to construct a correlation matrix either between the
templates, or between the wavelength bins; the result is equiva-
lent. We have chosen to do the correlation between the templates
since in our case the number of templates is less than the number
of wavelength bins, resulting in a smaller matrix that is simpler
to manipulate:

Ci j =
∑
λ

Tiλ T T
jλ. (7)

Since this correlation matrix is always real and square-
symmetric, it follows that it can be diagonalised,

C = RΛRT, (8)

where Λ represents the matrix of ordered eigenvalues (largest to
smallest) and R, the matrix of correspondingly ordered eigen-
vectors. The eigentemplates, E, can then be obtained:

E jλ =

∑
i R T

i j Tiλ√
Λ j

, (9)

with the resulting eigentemplates having the same dimensions as
the original dataset, and satisfying the orthonormality condition∑
λ

E iλ E T
jλ = δ i j. (10)

The effect of PCA is that it re-orientates the dataset to lie along
the orthogonal eigenvectors (axes) sorted by descending vari-
ance. It effectively creates an “importance order”, such that the
eigenvector with the greatest variance (largest eigenvalue) will
tend to correspond to the strongest signal features of the untrans-
formed dataset, with subsequent eigenvectors representing less
significant signal features, and the final eigenvectors, with the
smallest variances, representing noise. For example, if Hα is a
very prominent feature in most of the template spectra, it will be
present in one or more of the first few eigentemplates.

With this in mind we can now re-cast Eq. (1) in terms of an
approximation of the sum of the first N eigentemplates that are
now allowed to be shifted along the wavelength axis:

S λ '

N∑
i = 1

bi(∆) Ei(λ+∆), (11)

where bi(∆) are new expansion coefficients for the new basis.
Using the orthogonality condition from Eq. (10), Eqs. (5)

and (6) then become

b(∆) =
∑
λ

S λ Ei(λ+∆), (12)

χ2(∆) ∝
∑
λ

S 2
λ −

N∑
i = 1

b2
i (∆). (13)

We then observe that the first term in Eq. (13) is a constant in
the χ2 function, and can be disregarded; therefore minimising

the χ2 function in Eq. (13) is equivalent to maximising the related
function, χ̃ 2, defined as

χ2(∆) ∼ χ̃ 2(∆) =

N∑
i = 1

b2
i (∆). (14)

Hence, χ̃ 2(∆) is computed by first computing the cross-
correlation of each of the N retained eigentemplates Ei with the
galaxy spectrum (Eq. (12)), and then summing b2

i (∆) over these
eigentemplates. We can further simplify the problem by noting
that a convolution between two real signals transforms into a
multiplication in Fourier space between the individual Fourier
transforms of the galaxy and non-redshifted template spectra,
with the advantage that ∆ becomes a free parameter. Hence we
obtain

bi(∆) = F −1(Ŝ k Êik
)

=
1
M

M−1∑
k = 0

Ŝ k Êik e
2πik∆

M , (15)

and

χ̃ 2(∆) =

N∑
i = 1

[
F −1(Ŝ k Êik

)]2
, (16)

where Ŝ k, Êik, represent the DFTs of S λ, Eiλ; and i, F −1 repre-
sent

√
−1 and the inverse DFT respectively.

Now that we have obtained Eq. (16) it is an easy task to ex-
tract the estimate for the redshift, z. The χ̃ 2 function reaches
a maximum when the shift of the templates along the log-
wavelength axis corresponds to the true shift of the galaxy
spectrum, so that the redshift is estimated to be where ∆ =
∆χ̃ (=∆|χ̃= χ̃max ), giving

zest = 10 δs ∆χ̃ − 1, (17)

where δs is the grid spacing on the log10-wavelength axis.
Note that, for this PCA/cross-correlation redshift estimation

method, both the template and galaxy spectra must be free of
continuum. This is important to ensure that it is the spectral fea-
tures from each spectrum that are being matched to one another,
rather than to any continuum features, which may lead to spu-
rious correlations and hence confusion in the determination of
the galaxy redshift. In Darth Fader, we use an entirely empiri-
cal method for subtracting the continuum that is based on the
wavelet decomposition of the spectrum, and which is easily au-
tomated and very effective regardless of the signal-to-noise of
the spectrum under consideration. This method will be described
in detail in Sect. 4.3.1.

3. Simulations

The redshift estimation method described above requires two
separate spectral catalogues: a set of galaxy spectra with noise
and covering a range of redshifts that we aim to estimate (the
test catalogue), and a set of noise-free, zero-redshift template
spectra. We use the “Cosmos Mock Catalogue” (CMC) set of
simulations as provided by Jouvel et al. (2009); Zoubian &
Kneib (in prep.), which are based on the observed COSMOS
SEDs of Ilbert et al. (2009); Capak (2009). We then rebin a ran-
domly selected sub-sample of the CMC master catalogue onto
an evenly spaced log10 λ wavelength grid, spanning the range
between 3000 Å to 10 500 Å for the test catalogue, with a wider
range for the template spectra of 3000 Å to 20 900 Å.
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The template catalogue was compiled by randomly selecting
galaxies within the simulation set with redshift less than z = 0.1.
The number of galaxies selected was chosen to be roughly 10%
of the size of the main test catalogue, in order to ensure a repre-
sentative sample of template galaxies. This resulted in a template
catalogue of 277 simulated spectra, which were then blueshifted
to be at zero redshift, and a test catalogue of 2860 simulated
spectra with redshifts in the range 0.005 < z < 1.7.

This choice of binning, and a similar pixelisation scheme
as in Smee et al. (2013), gives a constant resolution across
the spectrum of R

(
= λ/∆λ

)
∼ 850 for all the catalogues, and

a grid spacing of δs = 2.17 × 10−4 log10 Å; as compared to
SDSS where the resolution and grid spacing are R ∼ 1845, and
δs = 1.0 × 10−4 log10 Å respectively.

The template spectra are required to have a larger wavelength
span than the test spectra since they must be able to accom-
modate a large enough overlap to identify the correct (global)
cross-correlation minima with these test spectra at all redshifts
under consideration. A restricted wavelength span on the set of
template spectra will necessarily reduce the maximum redshift
at which you can cross-correlate. This frequently will result in
the cross-correlation picking a local minimum that exists in the
overlap – since the global minimum lies outside this overlap –
often resulting in a confusion between one principal feature for
another.

Wavelength-independent (white) Gaussian noise was then
added to the test catalogue to generate several catalogues in
which all the galaxies had the same S/N. We define our S/N in
the same manner as in the SDSS pipeline (Bolton et al. 2012,
for BOSS/SDSS III)1, relative to the median S/N in the SDSS
r-band filter (Fukugita et al. 1996):

S/N r = median
[

flux
σ

]
6760 Å
5600 Å

, (18)

where σ is the standard deviation of our added white-Gaussian
noise, and the subscript r denotes that the median is calculated
between the bounds of SDSS r-band filter (5600 Å to 6760 Å).

We choose this particular definition of S/N so as to be con-
sistent with a realistic survey such as SDSS. The specific choice
of SDSS band on which to base the S/N definition does not af-
fect the method presented in this paper, however the motivation
for choosing the r-band over any of the other SDSS bands is
fully explained in Strauss et al. (2002). Whilst this definition of
S/N is a good proxy for S/N on the continuum, and as such al-
lows a simple comparison between different spectra, it should be
cautioned that it is not necessarily a good proxy for the S/N on
specific features.

An additional mixed S/N catalogue was generated by adding
pixel-dependent Gaussian noise such that the spectra in the cata-
logue had a uniform distribution in S/N in the range 1.0 < S/N <
20 as described in Sect. 6.

4. The Darth Fader algorithm

Darth Fader works in a number of different steps to take a test
catalogue of galaxy spectra containing both spectral lines and
continuum features (as well as noise), and to output a clean
catalogue of galaxies for which we are able to obtain robust
and accurate redshift estimates via PCA and cross-correlation.
A schematic of the full algorithm is shown in Fig. 1.

1 The idlspec2d pipeline software package is available at: http://
www.sdss3.org/dr8/software/products.php

In order to estimate the redshift of galaxies by cross-
correlation, both the templates and the test galaxy spectra must
be continuum-free. Current methods for continuum subtraction
rely on a handful of principal techniques: careful modelling of
the physics of galaxies to estimate the continuum, a matching of
continua between featureless galaxy spectra (typically sourced
from elliptical galaxies or galactic bulges) and the spectra from
which we wish to remove the continuum, or a polynomial fit-
ting. (Koski & Osterbrock 1976; Costero & Osterbrock 1977;
Panuzzo et al. 2007). Median filtering to remove spectral fea-
tures is also a possibility; however this relies on a fixed choice
for the median filtering window size, which may not be appro-
priate for resolved lines or blended line doublets.

The first two of these methods have the disadvantage of re-
quiring some knowledge of galaxy physics (which may not be
precisely known), and being somewhat restricted to lower red-
shift/higher S/N galaxies. Careful modelling is computationally
intensive and liable to result in failure if unusual galaxy types are
found, or if the physics involved is not fully understood or mod-
elled well enough. Continuum-matching methods require a pri-
ori knowledge of the galaxy type of a set of galaxies, and/or are
reliant on the correspondence between similar looking continua
(with one relatively featureless, in order to remove one from the
other) which may not exist for all spectra. All matching meth-
ods have a problem at high noise levels where different but su-
perficially similar spectra are mistakenly associated. Polynomial
fitting is a a further alternative that is limited to high signal-to-
noise spectra, or spectra that have been denoised beforehand (as
applied to the SDSS data release, Stoughton et al. 2002).

By contrast our new method of continuum subtraction is
completely empirical, requires no knowledge of the physics or
type of the galaxy involved and can be used even with very
noisy spectra. This method relies on a multiscale modelling of
the spectra, as described below.

4.1. Spectra modelling

We model the galaxy spectrum as a sum of three components –
continuum, noise and spectral lines:

S = L + N + C, (19)

where L contains the spectral line information, N is the noise
and C is the continuum. L can be decomposed into two parts,
emission lines Le and absorption lines La: L = Le + La, where,
provided the continuum has been removed, Le > 0 and La < 0.

The problem is then to estimate these components, L and C,
from a unique data set. This is possible assuming that features of
L are important only on small and intermediate scales, while the
continuum contains no small scale features, and is dominant on
large scales only. However, several problems remain:

– Strong emission/absorption lines impact significantly at all
frequencies, so a low pass filtering of the input is not suffi-
cient to properly estimate the continuum, C.

– Both emission and absorption lines are difficult to detect be-
cause of the presence of noise.

4.2. Continuum removal

The method we present in the following is done in four steps, two
for continuum estimation and two for absorption and emission
line estimation.

1. We first detect strong emission and absorption lines, which
could be seen as outlier values for continuum emission.
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template
catalogue

test
catalogue

blind
continuum
subtraction

addition
of noise

blind
continuum
subtraction

PCA
decom-
position

retain N
eigentemplates

FDR
denoising

cross-
correlation

Does the
denoised
spectrum
possess 6

total
features
or more?

estimate
redshift

discard
spectrum

yes

no

identical procedure

Fig. 1. Operation of Darth Fader. The number of eigentemplates to be retained is at the discretion of the user, and may depend on the distribution of
spectral types in the data. We have chosen to retain 20 eigentemplates because they encompass 99% of the total eigenvalue weight. In general the
number retained will be significantly less than the number of spectra in the original template catalogue. The FDR denoising procedure denoises the
positive and negative halves of the spectrum independently, with positivity and negativity constraints respectively. The requirement of six features
or more in the denoised spectrum effectively cleans the catalogue of galaxies likely to yield catastrophic failures in their redshift estimates. It
should be noted that a “no” decision represents the termination of that spectrum from the test catalogue and our analysis. Potentially, a further
analysis could be employed at this point in order to review spectra possessing 5 features, for example, to see if further information, such as the
association of standard lines to these features, can yield a redshift estimate (which could be used in conjunction with an estimate obtained from
cross-correlation, with corresponding redshifts likely to be correct).

2. We subtract from the data these specific strong features and
estimate the continuum from this.

3. We then re-estimate the emission lines from the original data
now continuum-subtracted via steps 1 and 2.

4. We also re-estimate the absorption lines in a similar way.

4.2.1. Strong line removal using the pyramidal median
transform

In order to detect strong emission and absorption lines that could
be seen as outliers for the continuum, we need a tool that is
highly robust to these outliers. The choice of median filtering
is generally the correct one for such a task. However, fixing the
median filtering window size to the width of an unresolved line
is not appropriate for blended line doublets and resolved lines.
In our case, a better choice therefore is the multiscale median
transform that was proposed for cosmic ray removal in infrared

data (Starck et al. 1996a; Starck & Murtagh 2006). Furthermore
its pyramidal nature allows us to significantly speed up computa-
tion time (Starck et al. 1996b). In this framework, strong features
of different width can be efficiently analysed.

In a general multiscale transform2, a spectrum of n bins,
S λ = S [1, . . . , n] can be decomposed into a coefficient set,
W = {w1, . . . , wJ , cJ}, as a superposition of the form

S λ = cJ(λ) +

J∑
j=1

w j(λ), (20)

where cJ is a smoothed version of the original spectrum S λ, and
the w j coefficients represent the details of S λ at scale 2− j; thus,
the algorithm outputs J + 1 sub-band arrays each of size n. The

2 IDL routines to compute this and other wavelet transforms are in-
cluded in the iSAP package available at: http://www.cosmostat.
org/software.html
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present indexing is such that j = 1 corresponds to the finest scale
or highest frequencies.

We use a similar multiscale transform in the following algo-
rithm for strong line detection:

– take the pyramidal median transform (PMT) of the input
spectrum S (a median window of size 5 was used in all our
experiments), we get a set of bands w j and cJ at different
scales j, P(S ) = {w1, . . . , wJ , cJ}. Where w j corresponds to
multiscale median coefficients, and can be interpreted as the
information lost between two resolutions when the down-
grading is performed using the median filtering followed by
a downsampling of factor 2. The cJ term corresponds to a
very coarse resolution of the input signal. Full details can be
found in Starck et al. (2010).

– for each band w j, threshold all coefficients with an amplitude
smaller than four times the noise level.

– set the coarse resolution, cJ , to zero.
– reconstruct the denoised spectrum S 1.

S 1 represents a crude estimation of the lines L, mainly because
the noise behaviour in the pyramidal decomposition cannot be
calculated as well as in a linear transform such as the Fourier
or the wavelet transform. However the process is much more ro-
bust than with a linear transform since strong lines with small
width will not contaminate the largest scales as it would be the
case for instance with wavelets, resulting in artefacts termed
“ringing”.

Since S 1 contains the signal from strong lines, S 2(= S − S 1)
will be free of any strong features, and robust continuum estima-
tion can easily be derived from it.

4.2.2. Continuum extraction

The second step is therefore to estimate the continuum from S 2.
The largest scale of S 2 should contain the continuum informa-
tion (see first term in Eq. (20)), whilst the noise and undetected
lines are expected to be dominant on smaller scales. So now the
coarsest scale in a wavelet decomposition, or any low pass fil-
tering, would give us a good estimation for the continuum. The
great advantage of wavelets for this task, as compared to a sim-
ple low pass filtering performed in Fourier space for example,
is to allow a greater flexibility for handling the border (i.e. min-
imising edge effects), and there being no requirement to assume
periodicity of the signal. We do this using the starlet wavelet
transform, also called isotropic undecimated wavelet transform
(Eq. (20)).

This transformation is simply a new representation of the
original signal, which can be recovered through a simple sum-
mation. For a detailed description of the starlet transform see
Starck et al. (2010), which has further been shown to be well-
adapted to astronomical data where, to a good approximation,
objects are commonly isotropic (Starck & Murtagh 1994, 2006).

We therefore estimate the continuum by first taking the
wavelet transform of S 2, i.e.: W [S 2] = {w[S 2]

1 , . . . , w[S 2]
J , c[S 2]

J }, and
then retaining only the largest scale: c[S 2]

J = C. This continuum
can now be subtracted from the original noisy spectrum to yield
a noisy, but now continuum-free, spectrum.

4.2.3. Example

We show in Fig. 2 an example noise-free spectrum from our
simulated catalogue, containing both line features and contin-
uum. In Figs. 3a and 3b, we show the same spectrum with noise

added resulting in values of 5 and 1 for the SDSS r-band S/N.
We note that galaxy surveys select galaxies based on their S/N,
typically with a lower bound at an S/N of 5–10 on the contin-
uum. Over-plotted in these latter two figures is the continuum as
estimated by the method described above, for the spectrum with
an S/N of 5, the continuum fit can be seen to be quite good. At
lower S/N, the continuum fit is quite poor, as S 1 is poorly es-
timated for this particular noise realisation, and the dominating
influence of noise effectively conceals the continuum. However,
this continuum estimate at low S/N is still well within the noise,
and the correct order of magnitude. For reference we calculate
the S/N on the Hα line in each case by taking the ratio of the
mean flux per pixel on the line and the noise standard deviation;
the Hα S/N was found to be 8.9, and 1.7 respectively for r-band
S/Ns 5 and 1.

4.3. Absorption/emission line estimation using sparsity

The wavelet representation of a signal is useful because it en-
ables one to extract features at a range of different scales. In
many cases, a wavelet basis is seen to yield a sparse representa-
tion of an astrophysical signal (such as a spectrum or a galaxy
image), and this sparsity property can be used for many signal
processing applications, such as denoising, deconvolution, and
inpainting to recover missing data (e.g. Fadili & Starck 2009;
Starck et al. 2010). In this paper, we focus on one such applica-
tion: that of denoising spectra using wavelet filtering.

The basic idea underlying sparse wavelet denoising is that
the signal we are aiming to recover is sparsely represented in
our chosen wavelet dictionary. This means that the signal is com-
pletely represented by a small number of coefficients in wavelet
space3. This sparsity property means that if we are able to iden-
tify the important coefficients, it is straightforward to extract the
signal from the noise.

There are various methods to do this; one simple method
would be Kσ clipping, where a threshold is set relative to an es-
timate of the noise, and all coefficients with an S/N less than K
are set to zero. A more sophisticated method involves the use of
a false detection rate (FDR) threshold, which allows us to con-
trol contamination from false positive lines arising from noise
features. This method will be described in detail below. Wavelet
denoising has been previously applied successfully to both stel-
lar (Fligge & Solanki 1997; Lutz et al. 2008) and galactic spectra
(Stoughton et al. 2002, for the SDSS early data release).

4.3.1. Sparse Wavelet Modelling of spectra

As the continuum C is now estimated, we will now use the con-
tinuum free spectrum S c = S −C. We can consider now that the
remaining problem is to estimate the lines, assuming S c = L + N
and L = Le + La. We exploit the wavelet framework in order to
decompose it into two components: line features, and noise. This
is done using a modified version of a denoising algorithm based
on the hybrid steepest descent (HSD) minimisation algorithm
developed by Yamada (2001).

Hence, we can reconstruct L by solving the following opti-
misation problem:

min
L

∥∥∥ŴL
∥∥∥

1 , s.t. S ∈ C, (21)

3 This is analogous to the representation of periodic signals in Fourier
space, where they may be represented by only a few frequencies in this
domain.
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O II* H δ H γ H β O III* (N II* + H α)

S II*

Fig. 2. Example spectrum from the test catalogue (z = 1.4992), prior to the addition of noise. The main emission lines are labeled; with an asterisk
denoting a doublet feature. The [O II] doublet is fully blended in this spectrum.

(a) (b)

Fig. 3. Same as in Fig. 2 but with manually added white-Gaussian noise at a signal-to-noise level in the r-band of 5 in a), and of 1 in b). The
red lines indicate the empirically-determined continua in each case. Many of the prominent lines are easily visible by eye at the higher S/N of 5,
whereas at the lower S/N of 1 most of the lines are obscured, with only Hα being sufficiently prominent so as to be detectable. The continuum
estimate is good at the S/N of 5, and comparatively poor, but of the correct order of magnitude, at the lower S/N due to the dominating influence
of noise. As an indication of line-S/N, we quote the values for the S/N on Hα for these particular spectra as 8.9 and 1.7 respectively for a) and b).

where Ŵ is the wavelet transform operator, ‖.‖1 is the `1 norm,
which promotes sparsity in the wavelet domain, and C is convex
set of constraints, the most important of which is a linear data
fidelity constraint:∣∣∣∣w[S ]

j (λ) − w[L]
j (λ)

∣∣∣∣ ≤ ε j, ∀ ( j, λ) ∈ M. (22)

Here w[S c]
j and w[L]

j are respectively the wavelet coefficients of S c

and L, and ε j is an arbitrarily small parameter that controls how

closely the solution L matches the input data. The constraint
set C may also include further constraints, such as positivity for
emission line-only spectra, etc. Note that the large scale coeffi-
cients cJ are not considered in this minimisation, as we do not
expect the largest scales to contain any useful information since
the continuum has been subtracted.M is the multiresolution sup-
port (Starck et al. 1995), which is determined by the set of de-
tected significant coefficients at each scale j, and wavelength λ,
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as

M := {( j, λ) | if w j(λ) is declared significant}. (23)

The multiresolution support is obtained from the noisy data S c
by computing the forward transform coefficients W = {w1, . . . ,
wJ , cJ}, and recording the coordinates of the coefficients w j with
an absolute value larger than a detection level threshold τ j, often
chosen as τ j = Kσ j,λ, where K is specified by the user (typi-
cally between 3 and 5) and σ j,λ is the noise standard deviation
at scale j and at wavelength λ. When the noise is white and
Gaussian, we have σ j,λ = σ j, and σ j can directly be derived
from the noise standard deviation in the input data. When the
noise is Gaussian, but not stationary, which is generally the case
for spectral data, we can often get the noise standard deviation
per pixel σλ from the calibration of the instrument used to make
the observation, and σ j,λ can be easily derived from σλ (Starck
& Murtagh 2006).

An interesting and more efficient alternative to this standard
Kσ detection approach is the procedure to control the FDR. The
FDR method (Benjamini & Hochberg 1995)4 allows us to con-
trol the average fraction of false detections made over the total
number of detections. It also offers an effective way to select an
adaptive threshold, α.

In the most general context, we wish to identify which pixels
of our galaxy spectrum contain (predominantly) signal, and are
therefore “active”, and those which contain noise and are there-
fore “inactive”. The measured flux in each pixel, however, may
be attributed to either signal or noise, with each having an as-
sociated probability distribution. When deciding between these
two competing hypotheses, the null hypothesis is that the pixel
contains no signal, and the alternative hypothesis is that signal is
present (in addition to noise).

The FDR is given by the ratio:

FDR =
V f

Va
, (24)

where V f is the number of pixels that are truly inactive (i.e.
are part of the background/noise) but are declared to be active
(falsely considered to be signal), and Va is the total number of
pixels declared active.

The procedure controlling the FDR specifies a fractional
threshold, α, between 0 and 1 and ensures that, on average, the
FDR is no bigger than α:

〈FDR〉 ≤
Vi

VT
.α ≤ α. (25)

The unknown factor Vi/VT is the proportion of truly inactive pix-
els; where Vi is the number of inactive pixels, and VT the total
number of pixels.

A complete description of the FDR method can be found in
Starck & Murtagh (2006) and, from an astrophysical perspec-
tive, in Miller et al. (2001). FDR has been shown to outperform
standard methods for source detection (Hopkins et al. 2002), and
Pires et al. (2006) have shown that FDR is very efficient for
detecting significant wavelet coefficients for denoising of weak
lensing convergence maps. In this paper, the FDR method is ap-
plied at each wavelet scale, and hence gives a detection thresh-
old τ j per wavelet scale.

4 Benjamini & Hochberg term FDR as false discovery rate in their pa-
per; it is exactly analogous to what we term false detection rate in this
paper.

The minimisation in Eq. (21) can be achieved using a version
of the HSD algorithm adapted to non-smooth functionals, full
details of which can be found in Starck et al. (2010).

In practice, we separately estimate emission lines and ab-
sorption lines by running the algorithm twice, first with a posi-
tivity constraint to get Le, and then with a negativity constraint to
estimate La. We found this approach more efficient than a single
denoising without constraint, allowing us to reduce ringing (a
type of denoising artefact that would compound feature count-
ing) around detected lines. Our final estimate of L is then ob-
tained by L = Le + La.

4.4. Example

As an example, we show in Fig. 4 the first attempt at the re-
construction of the lines, L, from Fig. 3a, using an FDR thresh-
old of α = 4.55%. Here, the positive and negative halves of the
spectrum have not received independent treatment and the de-
noising is unrestricted since it is for the purpose of continuum-
subtraction. It is the FDR denoising with the aim of feature-
counting (Fig. 6) that requires a separate treatment of positive
and negative halves of the spectrum; the FDR denoising in order
to isolate the continuum does not require this procedure. The de-
noising of Fig. 3b fails to detect any features, and thus returns a
null spectrum.

The secondary step – the denoising to determine the num-
ber of features – is shown in Fig. 6, for the continuum sub-
tracted spectrum shown in 5a. Note how the denoising artefacts
(termed ringing) in Fig. 4 are less present, and as such are not
mis-counted as features. In the noisier example (Fig. 5b) the de-
noising once again fails to detect any features and returns a null
spectrum (for this particular noise realisation and FDR thresh-
old of 4.55% allowed false detections), and this would lead to
the spectrum being discarded from our catalogue as unlikely to
yield an accurate redshift estimate.

4.5. Redshift estimation

For our method, we followed the PCA procedure as described in
Sect. 2 on a set of noise-free template spectra to obtain eigentem-
plates, of which we kept only the first N principal components
such that they comprised 99.93% of the total eigenvalue weight,
which in our case resulted in the retention of 20 eigentem-
plates. We continuum-subtracted our test spectra as described in
Sect. 4.3.1. Since the white-Gaussian noise on a spectrum will
in principle be uncorrelated with the eigentemplates, we chose
to use the noisy galaxy spectra in the cross-correlation. This en-
sured that we preserved all the line information in the spectrum,
rather than discarding some of the signal through denoising, and
hence we were not probing potential systematics of the denois-
ing simultaneously with the redshift estimation.

However, when dealing with the pixel-dependent noise, it is
the denoised spectra that must be used in the cross-correlation,
since very noisy pixels in proximity to less noisy pixels will
produce features that strongly resemble lines, and would thus
be highly correlated with features in the eigentemplates (inde-
pendent of the redshift of the spectra involved) if not denoised.
For example, an error-curve peaking strongly at 7600 Å, may
frequently produce features at this wavelength in the noisy spec-
tra that strongly resemble lines. The effect of this false fea-
ture is to bias the cross-correlations such that large features
in the templates (for example Hα) consistently match up to
this false line, independent of the true redshift of the spec-
trum, resulting in redshift estimates that consistently favour an
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Fig. 4. Result of an unrestricted denoising of the spectrum in Fig. 3a with an FDR threshold corresponding to an allowed rate of false detections
of α = 4.55%. The [O III] doublet, Hα and Hβ are all cleanly identified. There are small features corresponding to [O II] and [S II], and a spurious
feature at just over 8000 Å. The FDR denoising of Fig. 3b fails to detect any features for this particular spectrum, noise-realisation and choice of
FDR threshold, and thus returns a null spectrum (not shown).

(a) (b)

Fig. 5. Panels (a) and (b) are the spectra as shown in Figs. 3a and 3b with their empirically determined continua subtracted.

incorrect redshift. In this example many spectra would be biased
to have an estimated redshift of 0.158, irrespective of their true
redshift values. As such we must use the denoised versions of
the spectra with non-stationary noise for the cross-correlations.
However, the redshift estimation will thus incur any potential
systematics of the denoising procedure itself, this is explored
further in Sect. 6.1.

Clearly, at low S/N, some of these cross-correlations will
produce inaccurate results due to many features becoming lost
in the noise. Higher S/N is not a guarantee of a successful red-
shift estimate; it is possible that line confusion, a lack of features,
or poor representation in the basis of eigentemplates will result
in a catastrophic failure.
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Fig. 6. Result of denoising the positive and negative sections (shown together) of the spectrum shown in Fig. 5a with positivity and negativity
constraints respectively. Note the reduced ringing, which leads to a more representative result with respect to the number of true features. Once
again the FDR denoising of our noisier example (Fig. 5b) yields a null spectrum (not shown), and would thus result in the discarding of this
spectrum from the redshift analysis.

A simple, but effective, criterion for the selection of galaxy
spectra that will be likely to yield an accurate redshift estimate
can be developed by considering the number of significant line
features (either absorption or emission) present in the spectrum.
For a spectrum containing many prominent features, it should
be very easy to determine the redshift via cross-correlation with
a representative set of eigentemplates. In cases where only one
prominent feature is present, for example, we expect that the
cross-correlation function will have several local maxima, each
occurring when the location of the line feature in the test spec-
trum aligns with any of the features present in the (shifted)
template spectrum. A similar effect would be expected for a
spectrum with many – but not particularly prominent – features,
obscured by noise. In such cases, it will not generally be possi-
ble to obtain a correct redshift unless we have more information
about that feature or the spectrum (for example identifying the
continuum shape/using photometric data which would help in
identifying the colour of the galaxy; redder being indicative –
but not definitively – of higher redshift), and/or we make an as-
sumption that the most prominent feature is a specific standard
line (for example, Hα). There is also the possibility that the dom-
inant feature in the spectrum is a noise feature (this could be the
case for multiple features if the spectrum is very noisy), in which
case it will be impossible to estimate the redshift correctly.

With an increasing number of detected features, and a high
degree of certainty that they are not the result of noise contami-
nation, it should become clear that the redshift estimate obtained
for such a test spectrum becomes progressively more reliable.

A question arises as to quite how many features are sufficient
to distinguish reliable redshifts from those which are not reliable
and we wish to discard. Through empirical tests, we have chosen
6 features in total as the criterion by which we decide the relia-
bility of the redshift estimate of a test spectrum in our catalogue.

With this in mind, we use the denoising procedure described
in Sect. 4.3.1 on the continuum-subtracted spectrum and iden-
tify the number of features present in the denoised spectrum
via a simple feature-counting algorithm5. We then partition the
catalogue in two: a cleaned catalogue comprised of noisy spec-
tra for which denoising presents 6 or more features, where we
keep the redshift determination as likely to be accurate; and a
discarded catalogue with spectra only possessing 5 features or
fewer upon denoising, where the redshift estimates are deemed
to be unreliable.

Features are considered to be “peaks” anywhere where
the derivative of the spectrum changes from positive to neg-
ative (maxima), but only in the spectrum’s positive domain;
this means that, for example, a Gaussian-like function with
two maxima (a line-doublet), would count as two features.
Employing this method alone would ignore absorption features;
to overcome this we denoise and feature-count the positive and
negative halves of the spectrum separately, independently detect-
ing both emission and absorption features.

5 Algorithm adapted from “peaks.pro”, available from: http://
astro.berkeley.edu/~johnjohn/idlprocs/peaks.pro
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At low S/N there is a trade-off between relaxing the FDR
threshold to pick up more features – or indeed any features – and
imposing a stricter threshold to prevent the detection of spurious
lines. Recall that the FDR parameter constrains the average ra-
tio of false detections to total detections. Therefore, for an FDR
parameter of α = 0.05, for example, we allow on average one
false feature for every 20 features detected; i.e. an average ratio
of 19 true features to 1 false feature. In very noisy data, it might
not be possible to achieve this statistical accuracy, and therefore
no features will be identified by the algorithm.

It follows that even if 6 features can be obtained from the
denoising of the spectrum, some of them may still be spurious,
and this could lead to an erroneous redshift estimate from cross-
correlation (particularly if the spurious line is dominant, with
this strongly biasing the cross-correlation) and false-positive
contamination of our retained data. However, as noted, a max-
imum for this false line contamination is set by the FDR thresh-
old, α. In addition, the spectra that possess fewer than 6 features
may provide redshift estimates that would otherwise be reliable;
the criterion chosen leads them to be discarded. There exists this
necessary trade-off between the fraction of catastrophic failures
in the resulting redshift catalogue and the amount of data that is
discarded.

5. Experimental results

In order to test our algorithm, we investigate the effect of the
choice of the FDR parameter on the rate of catastrophic failures
and the fraction of retained data in the cleaned catalogue at dif-
ferent S/N values. We use the simulated data described in Sect. 3,
and apply the Darth Fader algorithm over multiple FDR thresh-
olds, keeping the signal-to-noise constant; and again over cata-
logues with different S/Ns, keeping the FDR threshold constant.
Lastly we apply Darth Fader to a uniformly mixed S/N catalogue
with pixel-dependent Gaussian noise with S/N ranging from 1
to 20, utilising a range of values for the FDR threshold.

We define the retention R; catastrophic failure rates before
cleaning, F , and after cleaning, Fc; and capture rate C of the
sample to be:

R =
Tc

T
× 100%, (26)

Fc =

(
1 −
U(c)

T(c)

)
× 100%, (27)

C =
Uc

U
× 100%, (28)

where T and Tc respectively denote the total number of galax-
ies in the sample (before cleaning) and the retained number of
galaxies in the sample after cleaning (the number that satisfy the
feature-counting criterion). Similarly, U and Uc, respectively
denote the number of successful redshift estimates in the sample
before and after cleaning. In Eq. (27), the brackets denote the
option of calculating the catastrophic failure rate before clean-
ing (ignoring the subscripts) or the catastrophic failure rate after
cleaning (inserting the subscript c everywhere shown). The num-
ber of successes after cleaning, Uc, cannot be greater than U,
hence the capture rate represents the proportion of correct esti-
mates available before cleaning that are retained post-cleaning.

We present the result of cleaning the catalogue using an FDR
threshold of α = 4.55% on a catalogue of spectra with an S/N
of 2.0 in Fig. 7. The two panels compare the distribution of red-
shift estimates before and after cleaning of the catalogue using

the feature-counting criterion. A clear improvement is seen when
cleaning is applied: the fraction of catastrophic failures in the
catalogue is reduced from 34.5% before cleaning to 5.1% after
cleaning. In addition, we have retained 76.2% of the galaxies
which yielded a correct redshift estimate before cleaning (the
capture rate), with the retained catalogue comprising 52.6% of
the total number of galaxies in the test catalogue.

Prior to cleaning there clearly exist two components to the
redshift estimates, a strong square diagonal (the x = y line where
the redshift estimates are likely correct) and a cloud of misidenti-
fications (with a small, non-square, diagonal component) where
the estimated redshifts are generally underestimates of the true
redshift. It is important to note that failures at this point are due
to the standard cross-correlation, with non-square diagonal com-
ponents often being indicative of line confusion (for example
between Hα and [O III]).

This represents a snapshot of how the Darth Fader algorithm
works: we can blindly isolate a correct subset of galaxies, en-
suring a good coverage of the correct data available in the pre-
cleaned catalogue, and we can – by choosing an appropriate
FDR threshold – guarantee that the resultant catalogue contains
a very low catastrophic failure rate. Though not implemented in
Darth Fader, the data rejected could be subject to further analy-
sis, using additional information (e.g. photometry) and alterna-
tive methodology to determine the redshifts of the galaxies.

Figure 8 shows the catastrophic failure rate of Darth Fader
before and after catalogue cleaning for a fixed FDR threshold
of α = 4.55%, as a function of median S/N in the r-band. At
high S/N (∼20), the standard cross-correlation method yields a
low catastrophic failure rate, and cleaning yields little improve-
ment. At an S/N of 10, however, the standard cross-correlation
method experiences a progressive increase in the catastrophic
failure rate, approaching 50% at an S/N of 1; in contrast our
method can maintain a low catastrophic failure rate (.5%) for
S/N levels of ≥1.

An important point to note is that the catastrophic failure rate
before cleaning (F ) represents a theoretical minimum amount
of data that must be discarded with a perfect catalogue cleaning
method (where Fc and C would be 0 and 100% respectively);
thus the theoretical maximum retention is given by 100% – F .
In practice the amount discarded is usually greater (since we in-
evitably discard galaxies that would otherwise yield correct red-
shifts), but it can also be less than this if a more relaxed threshold
is used, necessarily incurring false positive contamination in the
retained data set.

Using an FDR threshold of 4.55% allowed false detections,
a catalogue of S/N = 2 has a catastrophic failure rate of 34.5%
before cleaning, thus our maximum expected retention in a per-
fect catalogue cleaning should only be 65.5%, with our actual
retention at that FDR threshold being 52.6%. It should therefore
not be surprising that at the lower end of signal-to-noise the ex-
pected retention values for a cleaned catalogue are (necessarily)
low; however this can still represent a large proportion of the cor-
rect data available. The recovery of these data still represents a
net gain when compared to a total loss of these data, particularly
when these recovered data can be known to be highly accurate.

At higher S/N, the impact of cleaning is reduced because
denoising does not reveal more, significantly useful, diagnostic
information: the number of features present in the noisy spec-
trum will more frequently already meet the selection criterion
before cleaning, and thus cleaning the catalogue removes fewer
spectra. To ensure a similarly low catastrophic failure rate in low
S/N data would require a stricter FDR threshold to be used, and
therefore would result in more data being discarded.
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(b) After cleaning.

Fig. 7. A contour plot to show the effect on redshift estimation a) before and b) after cleaning a catalogue which is at a signal-to-noise of 2.0, and
cleaned with an FDR threshold of 4.55% allowed false detections. Contours indicate the fraction of points enclosed within them. Just under two
thirds of all the estimated redshifts lie on the diagonal (and are thus correct) before cleaning being applied. Clearly outliers still exist after cleaning
of the catalogue (off-diagonal), where the redshift estimation has failed, but as it can be seen, these are very few, and the result has a high certainty,
with 94.9% of the estimates being correct. The capture rate for this catalogue and at this FDR threshold is 76.2%.

To demonstrate the effect of the choice of FDR threshold on
the catastrophic failure rate, the retention and the capture rate in
the very low S/N regime, we test Darth Fader on two fixed low
S/N catalogues of median S/N values of 1.0 and 2.0 with flat
white-Gaussian noise, and one mixed S/N catalogue consisting
of spectra with pixel-dependent Gaussian noise (see Sect. 6.1)
with a uniform distribution of median S/N values between 1
and 20.

Figure 9 clearly demonstrates the tradeoff that exists between
the catastrophic failure rate after cleaning and the capture rate.
Relaxing the threshold (i.e. increasing α) improves both the re-
tention and the capture rate by detecting more features in the
spectra, more of which are likely to be false features rather than
true ones, and thereby increasing the number of spectra accepted
under the feature-counting criterion, but at a cost to the catas-
trophic failure rate since more erroneous spectra will also be ac-
cepted. A more conservative approach leads the FDR denoising
to remove more real features, with the guarantee that very few
of the remaining features will be false detections. This leads to a
general decrease in both the retention and the capture rate since
fewer spectra will exhibit the required number of features after
denoising, with the benefit of this being a decrease in the catas-
trophic failure rate.

Notice also in Fig. 9 that beyond a certain point the catas-
trophic failure rate saturates for the spectra with white-Gaussian
noise (and shows little improvement for the mixed S/N catalogue
with pixel-dependent noise), and stricter FDR thresholding (re-
sulting in a smaller fraction of false detections) does not yield
significant reductions in the rate of catastrophic failures; indeed
this only serves to penalise both retention and the capture rate.

The results of the uniformly mixed and pixel-dependent S/N
catalogue represent a step toward a more realistic view of what a
real galaxy survey could look like. A real survey would not, how-
ever, have such a uniform distribution of S/N values, and would
be skewed toward a greater population at lower S/N, with the

actual distribution in signal-to-noise being specific to the type of
survey and the instrument used.

6. Application to data

In the previous section, we demonstrated the robustness of the
Darth Fader algorithm on simulations. Here we expand on the
work in Sect. 5 to show that our feature detection methods work
well on real spectra from the SDSS archive.

A full test on real SDSS data, for example, would not be
practical since low S/N spectra are automatically discarded by
magnitude cuts in the SDSS data processing pipeline and not
available in their data products. Spectroscopic cuts for the main
galaxy sample are taken at magnitudes in r < 17.77 (Petrosian)
and the resulting spectra have a median S/N (per pixel) > 4
(Strauss et al. 2002).

Real data differ from our simulations in a number of impor-
tant ways: rare galaxy types/properties may exist within real data
catalogues, and these may not necessarily be well encompassed
by our simulations, and real data can often have more complex
noise properties. It is therefore important to test whether our de-
noising methods, and feature-counting criterion, can be applied
to real data.

6.1. Realistic pixel-dependent noise

Real spectrographs have a sensitivity that varies – sometimes
quite strongly – with wavelength or per pixel, primarily as a
result of the sky brightness and instrumental efficiency. We
simulate a realistic error-curve that spans the typical optical
survey wavelength range, and in Fig. 10 we show the 1σ error-
curve per pixel used to mimic a realistic instrument. This
is similar to what could be expected for an existing survey
such as SDSS, or the forthcoming DESI spectroscopic survey
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Fig. 8. Illustration of how Darth Fader improves the catastrophic failure rate of the redshift estimates of the test catalogue at different signal-
to-noise values (flat white-Gaussian noise) for a fixed FDR threshold of 4.55% allowed false detections. Note the marked improvement in the
S/N range 1.0–10.0 where catastrophic failure rates are reduced by up to 40%. For this choice of α, the catastrophic failure rate is always found
to be .5% after cleaning, for S/N values ≥1. Our catastrophic failure rate after cleaning at an S/N of 1 is similar to the rate for an S/N value
of 15 without cleaning. The catastrophic failure rate before cleaning (dashed line) represents the theoretical minimum amount of data that must be
discarded for perfect catalogue cleaning.

(Levi et al. 2013), (itself a merger of the BigBOSS (Schlegel
et al. 2011) & DESpec (Abdalla et al. 2012) spectroscopic sur-
veys), as well as other projects involving multi-object spec-
trographs6. The Darth Fader algorithm can use the error-curve
in the denoising step. Better accounting for the complex noise
properties of the observed spectrum enhances the ability to dis-
criminate between true features and those arising due to noise.

Figure 11 shows a continuum-subtracted spectrum from our
catalogue, truncated to match the wavelength range of the error-
curve (and hence our simulated instrument), before and after the
addition of the wavelength-dependent noise of Fig. 10. We also
plot the spectrum after denoising (again with an FDR threshold
of 4.55% allowed false detections) with the Darth Fader algo-
rithm when supplied with the error-curve in Fig. 10. This spec-
trum has a median S/N of 5 in the r-band at this particular red-
shift, (z = 1.5). However, for the same noise level, this S/N
would vary between 3 and 5 according to redshift, as a result of
different continuum levels within the boundaries of the r-band.

To test the effectiveness and robustness of the denoising, we
use the same test spectrum as in Fig. 11, and apply 10 000 ran-
dom (wrap-around) shifts in order to randomise the location
of the principal features. For each shifted spectrum, pixel-
dependent Gaussian noise is added as before, and at the same

6 These surveys are, however, expected to be at much higher resolution
than our simulations.

level. We then perform a denoising on each spectrum, and com-
pute the residual with the input noisy spectrum. The RMS resid-
ual gives an estimate of the noise with its statistical distribu-
tion – if the denoising has been effective – matching the input
error-curve. The randomised shifting of the spectrum allows us
to determine the effectiveness of the denoising independently of
the locations of the true features, and removes any cumulative
biasing arising from features being undetected after denoising,
or denoising artefacts. We do however expect a biasing at the
edges of the spectrum at both the long and short-wavelength
ends, due to a lack of information “beyond” the edge limiting
the ability to correctly characterise local features at the edge
as either signal or noise. In Fig. 12, we show the ratio of the
noise standard deviation over the input error-curve as a function
of wavelength, for both the pixel-dependent noise in Fig. 10, at
FDR parameters of α = 4.55% and α = 0.27%, and for flat white
Gaussian noise (α = 4.55%). The noise standard deviation has
been computed from the 10, 000 residuals described above.

As can be seen in Fig. 12, the addition and subsequent
denoising of flat noise behaves as one would expect; small
deviations about a flat line situated at y = 1 (shifted down in
the figure for clarity). Minor artefacts are present at the edges
due border effects specific to the wavelet transform, and features
occasionally straddling the edges of the spectrum. The more
complicated noise proves to be a considerably more difficult
task than the flat noise, and clearly has some persistent residual
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Fig. 9. Effect of the choice of FDR threshold on the catastrophic failure rate after cleaning (upper panel), the retention (middle panel) and the
capture rate (lower panel) on catalogues with a fixed S/N of 1.0 and 2.0 with flat noise; and on a mixed catalogue with a uniform distribution in
S/N between 1 and 20, with pixel-dependent noise. Note the greater sacrifices required both in retention and capture rate in order to obtain the
same catastrophic failure rate at an S/N of 1.0 compared to 2.0. Note also that we are able to obtain a 5.1% failure rate in our redshift estimates for
the cleaned catalogue, a retention of 52.6%, and a capture rate of 76.2% with the catalogue at an S/N of 2 at an FDR threshold of 4.55%.

features after denoising, particularly in the longer wavelength
range where the error-curve is most complex. This discrepancy is
due to the denoising not fully accounting for the rapidly chang-
ing noise from one pixel to the next.

Clearly this will impact on feature detection, resulting in
a greater number spurious detections particularly at longer

wavelengths. Increasing the FDR parameter, α, does provide sig-
nificant improvement in the efficacy of the denoising (as shown
by the middle curve). It may be possible to further ameliorate
these systematic effects with a more optimal wavelet choice
(should one exist), or by assigning a weight to each pixel to
counterbalance the effect of the denoising not fully accounting
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Fig. 10. A realistic error-curve, where the resolution and binning are the same as for our mock catalogue, but with the wavelength range being
slightly shorter, in order to be more proximal to the wavelength range of a realistic instrument. Gaussian noise is added to each pixel in our
simulated data, with a standard deviation given by the value of the error-curve at that same pixel.

Fig. 11. Denoising of test spectrum (cf. Fig. 2, continuum-subtracted) with pixel-dependent noise. Note how most of the main features are detected
and how, for this particular noise realisation, no false detections are found in the complicated and noisy long-wavelength region. We do incur a
false detection at the very short-wavelength end of the spectrum. This is a systematic edge-effect resulting from a lack of information that would
otherwise allow the algorithm to properly distinguish this as a noise feature.
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Fig. 12. Ratio of the true error-curve with respect to the derived error-curve from the rms error per pixel on the difference between the original
input spectrum and the denoised spectrum for both flat noise and pixel-dependent noise. The lower curve (blue) has been shifted down (by 0.5)
for clarity, and the upper curve (black), has also been shifted up (by 1.0) for clarity. Note the minor systematic edge effects on the denoising
of white-Gaussian (flat) noise. Clearly the complex noise region has a marked systematic effect on the denoising, with rapidly changing noise
regions experiencing both over- and under-estimates in the noise strength. This systematic effect is dependent upon the FDR threshold chosen,
with thresholding that is less strict (upper curve) being more prone than stricter thresholding (middle curve).

for the complex noise properties. Additionally, Fig. 9 (solid blue
line) shows that a stricter FDR thresholding is already effective
in mitigating these systematic effects of the denoising.

We can conclude therefore that Darth Fader provides effec-
tive and robust denoising, regardless of whether the noise is
stationary or wavelength dependent, provided that a choice of
FDR parameter is made such that it is appropriate to the type of
noise present.

6.2. Feature extraction in real data

The number of features we can detect stems in part from the
resolution of the spectra: if the resolution is poor, there is more
uncertainty in the precise wavelength of the spectral lines, mak-
ing it easier to confuse lines because they are slightly smeared
out. Another, more important concern, is the potential blending
of doublets or other lines in close proximity in wavelength, such
as [N II] with Hα. These localised groupings of lines provide
powerful constraints on the galaxy redshift since the wavelength
gap between the two lines in a doublet or close pair is often suf-
ficient to conclusively isolate which emission lines are present,
and hence deduce the redshift. Poorer resolution will often result
in blending of such features, limiting the number of detectable
features as well as broadening the possible location of the fea-
ture. Hence poor resolution impacts both the number of features

through blending, and the detected locations of the features in
wavelength due to coarser pixelisation of the data.

This can reduce the number of spectra meeting the feature-
counting criterion in poorer resolution spectra, however this
might be mitigated by considering a larger wavelength range for
the spectra: provided features exist in this extended range, more
features can be found to counteract the loss of feature detections
and precision as a consequence of the poorer resolution. It is for
this reason that our simulated spectra cover a larger wavelength
range than SDSS currently does (however DESI is expected to
have a similar wavelength range). In reality this trade-off is a
minor consideration, however, since the practicalities of instru-
ment design are the limiting factor for the wavelength range of
spectra in real surveys. Our simulated spectra are at moderate
resolution; instruments such as SDSS offer substantially higher
resolution spectra.

In order to show the broader applicability of Darth Fader to
real spectra potentially at higher resolution and covering a nar-
rower wavelength range, we take three SDSS galaxy spectra (an
emission line galaxy, ELG, a luminous red galaxy, LRG, and a
“typical” galaxy) and their respective 1σ error-curves, as fiducial
type galaxies that well represent the SDSS galaxy catalogue7.

7 These three example galaxies can be found at: http://www.sdss.
org/gallery/gal_spectra.html with Plate ID: 312, MJD: 51689
and Fibre IDs: 220 (LRG), 255 (Typical), & 529 (ELG).
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Fig. 13. Denoising and feature extraction for an SDSS ELG. The noisy spectrum (red) has been shifted up, and the error-curve (green) shifted
down, for clarity. The vertical dashed lines (blue) indicate the locations of detected features that correspond to true emission features. The FDR
denoising and feature extraction clearly pinpoints all of the major features without any difficulty. The three largest lines are, from left to right, the
[O II] doublet, [O III] and Hα.

These spectra have a resolution R
(
=λ/∆λ

)
significantly

higher than that of our simulations, namely R ∼ 1845 compared
to R ∼ 850, and as such features are better separated. The r-band
S/N for these galaxies is quoted to be 9.2 for the ELG, 9.3 for
the LRG, and 15.0 for the typical galaxy, respectively.

In denoising these spectra we use an FDR threshold of
α = 0.27% as motivated by the discussion in Sect. 6.1 and the
results in Fig. 9. We apply a positivity (and “negativity”) con-
straint, as before, to denoise the positive and negative sections
of each spectrum independently, and recombine them to form the
final denoised spectrum. The procedure uses the same positivity
constraint, once on denoising the spectrum, and once on denois-
ing the reverse-signed spectrum – this is entirely equivalent to
denoising once with a positivity constraint, and again with a
“negativity” constraint.

In Fig. 13, we show the continuum-subtracted spectrum, the
FDR denoised spectrum, and the line features we detect for the
emission-line galaxy. We also plot the 1σ error-curve, which we
assume as Gaussian.

This ELG spectrum has many strong features, so it is not
surprising that the FDR denoising detects most of them. We do
however miss one very weak emission feature that is comparable
to the noise, at ∼7800 Å. It should also be noted that the potential
line-like features arising from the noise, namely at ∼5600 Å and
again at ∼8950 Å are completely ignored by the FDR denoising
since, by supplying the error-curve, these features are correctly
identified as likely arising from noise rather than signal.

Feature detection in the LRG spectrum (Fig. 14) presents a
more difficult challenge. Despite the signal-to-noise ratio in the
r-band being of similar value to the ELG, the widths of the fea-
tures compared to the noise (i.e. the signal-to-noise values on
the lines) are much smaller. We successfully detect five absorp-
tion features, despite them not being particularly prominent. We
detect further spurious, smaller, features that cannot be associ-
ated with any common lines, and are likely minor artefacts from
denoising.

The results for the typical galaxy are similar to those of
the LRG (Fig. 15). In this case, we again detect all five of the
absorption features, in addition we obtain some unidentifiable
spurious features.

For each of the galaxy types shown here we can detect at
least six features, though not all of them are true detections, nor
do we require them to be necessarily true detections. Though we
only consider Gaussian noise here, the tools used in Darth Fader
are in principle not limited to purely Gaussian errors, and can
be utilised with different types of errors (in particular Poisson,
Gaussian + Poisson, multiplicative and correlated errors), and
provided that denoising can be done appropriately the impact on
the Darth Fader method will be minimal.

7. Conclusions

As we have shown, Darth Fader is a powerful tool for the im-
provement of redshift estimation without any a priori knowledge
of galactic composition, type or morphology.
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Fig. 14. Denoising and feature extraction for an SDSS LRG. The absorption lines from left to right are CaII (H and K), G-band, MgI and NaI.
G-band absorption is not strictly an absorption line, but rather an aggregate absorption feature due to the presence of multiple lines arising from
metals (mainly iron) in the numerous G-type stars present in the galaxy population. Also not to be confused with the SDSS photometric filter
g-band.

We can successfully make an estimate of the continuum
without needing to model the spectra, and we can confidently
make use of data at signal-to-noise levels that were previously
beyond the reach of other techniques. This is achieved by de-
noising the data with an appropriately chosen false detection rate
threshold and implementing a simple feature-counting criterion,
resulting in very low catastrophic failure rate for redshift esti-
mates for a subset of galaxies in the catalogue.

This is the most useful aspect of Darth Fader – it can be used
as a flagging mechanism to extract what is likely to be good data
for redshift estimation from what is likely to yield an inaccu-
rate redshift estimate, with a good level of confidence. Even at
signal-to-noise levels as low as 2.0 in the r-band, we can retain
52.6% of the data, and contained within this subset we can obtain
76.2% of all the potentially correct redshift estimates that were
initially available, resulting in a highly confident subsample
where 94.9% of the redshift estimates are reliable. This cleaning
therefore has applications in large surveys, such as the upcom-
ing Euclid survey (Refregier et al. 2010; Laureijs et al. 2011),
which requires a spectroscopic redshift catalogue with very few
catastrophic failures.

Darth Fader represents a potential greater reach of spectro-
scopic surveys in terms of depth, since the faintest (and thus
noisiest) galaxies in a survey – those at the detection limit of
the instrument – will be tend to be those at higher redshifts.
Currently, lower signal to noise spectra tend to be discarded, or
to yield highly unreliable redshift estimates. Darth Fader allows

for the inclusion of a substantial subset of these otherwise-
discarded galaxies.

Darth Fader demonstrates that these current methods, with a
blunt cut-off in the signal-to-noise/flux for what is considered to
be informative data, can be significantly improved upon, and that
improvements are available all the way down to very low signal-
to-noise levels. The levels of retention presented in this paper
may seem moderate, however, for such low signal-to-noise data
they can only be expected to be so, as redshift estimation nec-
essarily fails for a large fraction of spectra at these high noise
levels. Darth Fader performs very well and can reliably extract
the majority of the likely correct data that is available in the low
S/N regime. It is for this reason that for our method the cap-
ture rate is a more useful diagnostic than the retention, since it
shows that for the available informative data contained within
the uninformative data, Darth Fader can isolate and extract the
majority of it in a blind and fully automated manner, resulting
in catalogues where we can have a very high degree of certainty
that the redshifts are correct. Indeed, for all the S/N levels we
test, Darth Fader is always able to capture at least 60% of the
available data that we know to be correct, with this minimum
rising to 70% with more standard choices of FDR parameter val-
ues (∼4%). Hence – even when overall retention values appear
moderate – the low rate of catastrophic failures together with the
high proportion of good data available that is retained, represent
a substantial gain when the alternative is to throw away the en-
tire dataset with a blunt S/N cut because we cannot be certain as
to which spectra are viable or not.
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Fig. 15. Denoising and feature extraction for an SDSS typical galaxy. This spectrum is similar to that of the LRG, the highlighted absorption lines
being the same as previously.

In addition, Darth Fader can deal with realistic noise pro-
viding we know the 1σ error-curve, where we can reduce catas-
trophic failure rates of a mixed S/N catalogue from 22.7% down
to 3.3% with a capture rate of 90.6% with an appropriate choice
of FDR parameter. The algorithm does a good job of captur-
ing nearly all of the spectra for which we are able to obtain a
correct redshift estimate, and simultaneously maintaining a low
catastrophic failure rate. Furthermore, we have shown that the
continuum subtraction and feature-identification methods used
in Darth Fader are effective on spectra from the SDSS data
archive. This provides a proof-of-concept of the applicability of
the method to real data, though there may be scope for devel-
opment in this area. An additional feature is that, depending on
different needs, the FDR parameter can be adjusted to enhance
the capture rate and retention at a small cost to the catastrophic
failure rate, or vice versa.

Our analysis in this paper utilises catalogues which are sim-
ulated, and as such they may be simpler than catalogues of
real data; they do however fully represent the expected various
galactic morphological types, distribution and redshift proper-
ties. The noise properties we use in our simulations may also be
less complicated than those in real data, however, non-stationary
Gaussian noise (varying per pixel) is a good enough approxima-
tion to real data, and this has been shown with the competent
denoising of the SDSS example spectra (Figs. 13–15).

The simulations we use are of considerably lower resolution
(R ∼ 850 compared to R ∼ 1845) than would be expected
for a modern day spectral survey, with SDSS resolution be-
ing over twice as high, and the forthcoming DESI survey
(Levi et al. 2013) – a merger of the BigBOSS and DESpec

surveys (Schlegel et al. 2011; Abdalla et al. 2012, respectively)
– expected to be higher still. The wavelength range of our simu-
lated spectra (3000 Å to 10 500 Å) are slightly longer than would
be expected for a realistic instrument (3500 . λ . 10 000), but
given the poorer resolution in our simulations, it is justifiable to
extend the range. These factors do not, however, prevent these
catalogues from being realistic. Indeed we have shown that it is
possible to detect the required number of features in a shorter
wavelength range, such as that of SDSS. There is therefore great
promise for the use of these techniques in future large scale
structure surveys, for feature extraction, redshift determination,
and photometric calibration.

Continuum removal with wavelets, when compared against
elaborate modelling, may be seen as a comparatively naïve
method. However, there is no loss of generality in its usage
in cross-correlation based redshift estimation methods, and it
benefits from being a blind method requiring no prior knowl-
edge of how galactic spectra arise.

The wavelet-based continuum subtraction procedure used
in Darth Fader is in principle not limited to galactic spectra,
and preliminary tests suggest that it will prove useful for the
continuum-modelling of the more structurally rich spectra of
stars. Indeed, for any spectra whose components are easily mod-
elled with the correct choice of wavelet, we expect our contin-
uum subtraction method to work as demonstrated.

Although we only consider the numbers of features in this
paper, the ability of the Darth Fader algorithm to detect likely
true lines could readily be adapted to deal with feature iden-
tification, in particular for spectra where noise levels are very
high, and Kσ clipping would offer little advantage (since it has
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a tendency to clip signal as well as noise). This would make it
possible to cross-check the position of standard lines which have
been redshifted to match the estimated redshift of the galaxy,
against the positions of the maxima in the FDR denoised spec-
trum (since these are the features considered important by FDR).

Darth Fader is clearly useful for both redshift estimation and
empirical continuum estimation and will be made publicly avail-
able as part of the iSAP8 suite of codes. The blind nature of
our algorithm, together with the ability to handle realistic noise,
show promise for its inclusion in future spectral survey pipelines
and data analyses.
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