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ABSTRACT
In the absence of any compelling physical model, cosmological systematics are often misrep-
resented as statistical effects and the approach of marginalizing over extra nuisance systematic
parameters is used to gauge the effect of the systematic. In this article, we argue that such
an approach is risky at best since the key choice of function can have a large effect on the
resultant cosmological errors.

As an alternative we present a functional form-filling technique in which an unknown,
residual, systematic is treated as such. Since the underlying function is unknown, we evaluate
the effect of every functional form allowed by the information available (either a hard boundary
or some data). Using a simple toy model, we introduce the formalism of functional form filling.
We show that parameter errors can be dramatically affected by the choice of function in the case
of marginalizing over a systematic, but that in contrast the functional form-filling approach is
independent of the choice of basis set.

We then apply the technique to cosmic shear shape measurement systematics and show that
a shear calibration bias of |m(z)| � 10−3 (1 + z)0.7 is required for a future all-sky photometric
survey to yield unbiased cosmological parameter constraints to per cent accuracy.

A module associated with the work in this paper is available through the open source ICOSMO

code available at http://www.icosmo.org.

Key words: methods: data analysis – methods: numerical – methods: statistical – cosmology:
observations.

1 IN T RO D U C T I O N

Cosmology is entering a formative and crucial stage, from a mode
in which data sets have been relatively small and the statistical ac-
curacy required on parameters was relatively low, into a regime in
which the data sets will be orders of magnitude larger and the statis-
tical errors required to reveal new physics (e.g. modified gravity –
Heavens, Kitching & Verde 2007; Kunz & Sapone 2007; massive
neutrinos – Cooray 1999; Abazajian & Dodelson 2003; Hannestad
& Wong 2007; Kitching et al. 2008c; dark energy – Albrecht et al.
2006; Peacock & Schneider 2006) are smaller than any demanded
thus far. The ability of future experiments to constrain cosmological
parameters will not be limited by the statistical power of the probes
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used but, most likely, by systematic effects that will be present in
the data, and that are inherent to the methods themselves.

The problem that we will address is how the final level of sys-
tematics, at the cosmological parameter estimation stage, should be
treated. This problem is of relevance to all cosmological probes,
some examples include weak lensing and intrinsic alignments
(Crittenden et al. 2000; Heavens, Refregier & Heymans 2000;
Catelan, Kamionkowski & Blandford 2001; Brown et al. 2002;
Heymans & Heavens 2003; King & Schneider 2003; Hirata &
Seljak 2004; Bridle & Abdalla 2007; Bridle & King 2007), baryon
oscillations and bias (e.g. Seo & Eisenstein 2003), X-ray cluster
masses and the mass–temperature relation (e.g. Pedersen & Dahle
2007) to name a few.

The general thesis we advocate in this article is that the standard
approach to systematics that of assuming some parametrization and
fitting the extra parameters simultaneously to cosmological param-
eters (e.g. Kitching, Taylor & Heavens 2008a; Bridle & King 2007;
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Huterer et al. 2006; for weak lensing analyses) both misrepresent a
systematic effect as a statistical signal and more importantly is not
robust to the choice of parametrization.

As an alternative, we will present a method, ‘form-filling func-
tions’, in which a systematic is treated as such: an unknown function
which is present in the data. By exhaustively exploring the space of
functions allowed by either data, simulations or theory, the effect of
a systematic on cosmological parameter estimation – a bias in the
maximum likelihood – can be fully characterized. This is a natural
extension of the work presented in Amara & Refregier (2008). We
will present this using a simple toy model to explain and demon-
strate the essential aspects of the formalism. We will then apply
this technique to the problem of shape measurement systematics in
weak lensing.

We begin in Section 2 by categorizing the different approaches
to systematics that can be taken, Section 3 introduces the parame-
ter estimation formalism and how systematics can be included in a
number of alternative ways. We will then introduce a toy model that
will then be used to introduce ‘form-filling functions’ in Section 4
where we will also compare the standard approach to systematics
to the one taken here. The application to weak lensing shape mea-
surement systematics is presented in Section 5 and conclusions will
be discussed in Section 6.

2 A PPROACHES TO SYSTEMATIC EFFECTS

In this section, we will discuss the problems that may be faced with
respect to systematics and also address the possible ways that these
problems can be addressed.

There are two scenarios in which systematic questions may arise.
Either some data are available, from which information must be ex-
tracted, and the effect of systematics on some parameters measured
must be addressed, or one is planning for a future experiment and
the potential impact of systematics on some interesting parameters
must be forecasted. In both cases, there may be some extra data
available that have partially measured the systematic effect, or there
may be some hard boundary within which it is known that the sys-
tematic must lie – either from a theory or from simulation. When
forecasting one may want to place a constraint on the quality of the
extra data needed, or the extent of the hard boundary such that fu-
ture measurements are robust. For both data fitting and forecasting,
there are a number of methods that can be employed to address the
systematics which we review here.

In the following we will consider a generic method for which the
data are an observed correlation (covariance) Cobs which is a sum
of a ‘signal’ Csignal(θ ), which depends on a set of statistical (cosmo-
logical) parameters θ , and a general additive systematic effect Csys

(that can, or cannot, depend on the parameters we wish to measure),
so that the total observed signal is now

Cobs(θ) = Csignal(θ ) + Csys(θ) + Cnoise(θ). (1)

We have also added a benign shot-noise term Cnoise [which again
can, or cannot, depend on the parameter(s) being measured]. We
do not claim that all systematics can be written this way (but most
can when the data used are a correlation/covariance of quantities) –
a multiplicative bias is just a special kind of additive term which
has the same form as the signal but is multiplied by a systematic
constant.

We have identified three broad categories of approach that could
be taken when dealing with systematics.

2.1 Marginalization

Marginalization of systematics entails using a model, a function
containing a set of parameters a, to characterize the systematic
effect Csys → Csys(a) . In this case, the cosmological parameters θ

and the systematic parameters a are measured simultaneously. The
extra ‘nuisance’ parameter errors are marginalized over to arrive at
the final cosmological parameter errors that now take into account
the systematic.

Marginalization misinterprets the systematic as a statistical sig-
nal (attempts to characterize the systematic by finding best-fitting
parameters), by reducing the estimation and determination of the
systematic into a parameter estimation problem. It would be an
inappropriate statistical approach to estimate nuisance parameters
that were known to have a very small degeneracy with cosmological
parameters and then to claim that systematics were negligible.

When marginalizing, one is immediately faced with the choice
of model. In the absence of some underlying physical theory, one
is forced to parametrize. The key choice of parametrization is what
makes this approach risky (at best); both the number of parameters
and the prior (if any) on those parameters can dramatically affect
the level of influence that the systematic may have on cosmolog-
ical parameter estimation. One can choose either simple models,
whose small degree of freedom may have a minimal impact on
the cosmological parameters, but whose behaviour may mask the
true systematic signal, or very flexible models; but one is always
limited by the number of degrees of freedom that can be estimated
from the data, and using, for example, �100 nuisance parameters
to find the systematic error on ∼10 cosmological parameters seems
asymmetric.

In some circumstances, there are physical models that can be
called upon to model a systematic accurately, in this case marginal-
ization becomes an attractive option. One could also use more so-
phisticated techniques, such as Bayesian evidence, to determine
which parametrization is warranted given the data available. But
even in such a scenario the question of whether an even more apt
model is available, or not, would always remain and even in this
case a residual systematic will remain (at least due to noise) which
may contain a still unknown effect and must be treated in the correct
way.

2.2 Bias formalism

The systematic is not marginalized over in cosmological parameter
estimation, but is left in as a systematic term Csys �= Csys(θ ). By
‘leaving a systematic in’ and not marginalizing over parameters
the systematic is correctly identified as a systematic effect, albeit
that the magnitude of the effect must be correctly quantified. If
a systematic is ‘left in’, then the cosmological parameter errors
themselves are unaffected (in the case that the observation is not
dominated by the systematic). The maximum-likelihood value of
the cosmological parameters however will always be biased by an
amount which depends upon the true, underlying, systematic signal.
There have been studies of the biases that can be caused when a
systematic is treated as such (e.g. Huterer & Takada 2005; Amara
& Refregier 2008; Kitching et al. 2008a), although all studies have
assumed some functional form for the underlying systematic.

The task is then to investigate all possible functional forms for the
systematic that are allowed by either theory or data so quantifying
the extent of the possible biases. In this case, flexibility is paramount
since every possible allowed function must be tested. This is the
approach advocated in this article.
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By treating the systematic in this way, as a true systematic effect
as opposed to a statistical effect (as in marginalization), we can move
away from the dilemma of choosing a particular parametrization.

2.3 Nulling

The general approach to nulling is that the statistical signal used (the
way in which the data are used to extract cosmological information)
can be modified in such a way that the systematic signal is cancelled
out, i.e. Cobs = Csignal + Csys + Cnoise → Cobs

new = Csignal
new + Cnoise

new

and Csys
new = 0. Cosmological parameter estimates can then be made

using this new statistic which by construction has minimized, or
completely removed, the systematic effect.

The nulling approach is a potentially powerful tool, for example
as shown by Joachimi & Schneider (2008) this could be used in the
removal of weak lensing intrinsic alignment contaminant. However
when nulling, the cosmological signal is changed in such a way
that parameter constraints can be severely degraded. We will not
address the nulling approach further in this article, but note that the
possibility of ‘optimal’ weighting (partial nulling) should exist, in a
mean-square error (MSE) sense. Nulling aims to set the bias due to a
systematic to zero, which may be to strict since our true requirement
is simply that the biases are subdominant to the statistical errors.

In the next section, we will review the marginalization proce-
dure and formalize the biasing effect of leaving a systematic in
the signal. What we endorse within the context of the bias formal-
ism is using the theory and data themselves to investigate the full
range of allowed functions, thus fully characterizing the effect that
a systematic may have.

3 TH E G E N E R A L F O R M A L I S M

A common approach in cosmology is to measure the signal of
some quantity, and match this to the theory in order to constrain
cosmological parameters. However, as we will show, the effect of
systematics on such cosmological probes is usually dealt with in a
way which can potentially mask their true impact.

Fig. 1 shows the basic situation which we will address. The
left-hand panel shows the observable Cobs which is a sum of the
signal Csignal and some systematic plus noise Csys + Cnoise (equa-
tion 1). Furthermore, there is some tolerance envelope around the

Figure 1. An example of the basic premise concerning the parameter esti-
mation methodology. The left-hand panel shows a total observed correlation
(solid black line), that is a sum of the signal (dot–dashed line) and system-
atic plus noise (dashed line). The systematic is known to lie within some
tolerance envelope (within the grey solid lines). The right-hand panel shows
the observation minus the mean of the systematic plus noise, leaving an
estimator of the signal (solid line) and a systematic tolerance about zero.

systematic (grey solid lines) which represents the state of knowl-
edge regarding the systematic. One can then subtract the mean Csys

and Cnoise from the observable which results in an estimator of the
signal ̂Csignal

Cobs − 〈Csys〉 − 〈Cnoise〉 = ̂Csignal + C̃sys (2)

plus some residual systematic C̃sys which is centred around zero.
In general, throughout we always consider the case that there are
some extra data that place constraints on the systematic C̃sys. This
is shown in the right-hand panel of Fig. 1, the systematic tolerance
envelope now lies about the C(x) = 0 line.

The measurement of this signal to estimate the values of some
parameters θ within a theory C

signal
theory(θ ) can be done in the usual way

χ 2(θ ) =
∑

x

σ−2
C

[
̂Csignal − C

signal
theory(θ)

]2
, (3)

where σC(x) is the error on the signal. Note that we will remove (x)
[e.g. σC(x) → σ C] from all equations for clarity. A best estimator of
the parameters from the observation θ̂ is defined such that dχ 2/dθ =
0. However, this statistic has not taken into account the residual
systematic effect in any way.

To make predictive statements regarding parameter estimation, it
is convenient to work with the Fisher matrix formalism. The Fisher
matrix allows for the prediction of parameter errors given a specific
experimental design and method for extracting parameters. In the
case of Gaussian-distributed data where we assume that the error
on the signal is not a function of parameter values σC �= σC(θ ), we
can take the covariance of the estimated values of the parameters
(Jungman et al. 1996; Tegmark, Taylor & Heavens 1997; Fisher
1935)

cov[θ̂ i , θ̂ j ] = 〈(θ̂ i − 〈θ̂ i〉)(θ̂ j − 〈θ̂ j 〉)〉 = F −1
ij , (4)

where the Fisher matrix is defined by (Tegmark et al. 1997; Jungman
et al. 1996; Fisher 1935)

Fij =
∑

x

(
σ−2

C

∂C

∂θ i

∂C

∂θ j

)
. (5)

The marginal errors on the parameters are given by �θi =√
(F −1)ii , this is the minimum marginal error that one can expect

for the experimental design considered (due to the Cramer–Rao
inequality; Tegmark et al. 1997).

3.1 Model fitting and marginalization

The marginalization approach fits a model to the residual systematic
and treats the systematic as an extra statistical effect. The model
chosen for the systematic C

sys
theory(a) depends on a suite of new

parameters a and on the original parameter set θ where the total
parameter set is given by � = (θ , a). The extra parameters are then
assumed to be part of the signal of a method. To estimate the values
of the parameters θ , the χ 2 statistic of equation (3) is modified to

χ 2
total(θ , a)

=
∑

x

σ−2
Csignal

[
̂Csignal − C

signal
theory(θ ) − C

sys
theory(a)

]2

+
∑

x

σ−2
Csys

[
C̃sys − C

sys
theory(a)

]2
, (6)

where the total χ 2 is minimized to find the best estimator of the pa-
rameters. The likelihood functions for the cosmological parameters
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are found by marginalizing the combined likelihood p(θ , a) over
the new parameters

p(θ) =
∫

dap(θ, a). (7)

The new Fisher matrix for the total parameter set � becomes a
combination of the cosmological Fisher matrix F θθ , the derivatives
of the likelihood with respect to the cosmological parameters and
the systematic parameters F θa and the systematic parameters with
themselves F aa

F �� =
(

F θθ F θa

F aθ F aa

)
, (8)

where the individual terms are given by

F θθ
ij =

∑
x

(
σ−2

Csignal

∂C
signal
theory

∂θ i

∂C
signal
theory

∂θ j

)
,

F θa
ij =

∑
x

(
σ−2

Csignal

∂C
signal
theory

∂θ i

∂C
signal
theory

∂aj

)
,

F aa
ij =

∑
x

(
σ−2

Csignal

∂C
sys
theory

∂ai

∂C
sys
theory

∂aj

)

+
∑

x

(
σ−2

Csys

∂C
sys
theory

∂ai

∂C
sys
theory

∂aj

)
, (9)

where we have assumed that the errors are uncorrelated and do not
depend on the parameters.

The predicted cosmological parameter errors now including the
effect of the systematic are given by �θi =

√
[(F ��)−1]ii (see

Appendix A for a more detailed expression). The cosmological pa-
rameter errors are increased due to the degeneracy between the cos-
mological and systematic parameters (included by the F θa terms).
The tolerance envelope around the residual systematic (Fig. 1) acts
as a prior on the systematic parameters in the chosen model.

3.2 The bias formalism

The bias formalism treats a systematic as such, by not statistically
marginalizing over any extra parameters within a model. Instead, the
systematic simply adds an extra systematic function to the signal.
By doing this, a bias is introduced in the maximum-likelihood value
of the parameters with respect to the true underlying values

b[θ i] = 〈θ̂ i〉 −
〈
θ̂

true
i

〉
. (10)

When marginalizing, the choice lies in the suite of parameters, and
the function, chosen. Here there is a similar choice, one must assume
that the systematic has some functional form C

sys
function. To estimate

the values of the cosmological parameters θ , the χ 2 statistic of
equation (3) is modified to include the assumed systematic

χ 2(θ ) =
∑

x

σ−2
C

[
̂Csignal + C

sys
function − C

signal
theory(θ )

]2
. (11)

The estimate of the parameter values will now be biased but the
marginal error on the parameters will remain the same (the caveat
here that this is only the case when the systematic is smaller than
the signal).

It can be shown (Kim et al. 2004; Taylor et al. 2007; Amara &
Refregier 2008) that, with the assumption of Gaussian likelihoods,
the predicted bias in a parameter due to an uncorrected systematic
is given by

b(θ i) = (F −1)ijBj , (12)

where

Fij = F θθ
ij =

∑
x

(
σ−2

C

∂C
signal
theory

∂θ i

∂C
signal
theory

∂θ j

)
,

Bj =
∑

x

σ−2
C C

sys
function

∂C
signal

theory

∂θ j

. (13)

To recap Sections 2 and 3, Table 1 summarizes the effect on the
likelihood surface and the primary problem encountered by each
systematic approach.

In cases where the systematic affects the error on the signal σC =
σC(Csys) (which is almost always) then leaving a systematic in the
signal can cause a bias and increase the marginal errors. However,
the increase in marginal errors is negligible for systematics that have
an amplitude which is much less than the signal, and cause biases
that are �10σ (Amara & Refregier 2007). Equation (12) is also an
approximation for the case of small biases, if the bias is large relative
to the marginal error then the curvature of the likelihood surface will
have varied substantially from the Gaussian approximation. In such
cases, one could go to a higher order in the Taylor expansion used
to derive equation (12), or calculate the full likelihood.

3.3 A simple example

To review the general formalism described thus far, and for use in
subsequent sections, we will here introduce a simple model. The toy
model we will consider is shown in the right-hand panel of Fig. 1.
Referring to equation (1), the signal is given by a simple polynomial
expansion

C
signal
example(x) = a0 + a1x + (−0.45)x2 + (0.05)x3, (14)

where the statistical parameters we are concerned with (with fidu-
cial, true, values) are the parameters a0 = 1.0 and a1 = 1.0. We
assume that the observed signal is measured with an error of σC(x) =
0.25. We include the x2 and x3 terms so that the problem is slightly
more realistic, in that there is an extra behaviour in the signal that
we do not wish to constrain but may effect the determination of the
parameters of interest.

Fig. 2 shows the simple model signal with some Gaussian-
distributed data points. We then calculate the two-parameter
marginal errors using equation (3) where we use the model as in
equation (14). Table 2 shows the measured marginal errors from this
simple mock data, and compares these with the expected marginal
errors calculated using the Fisher matrix (equation 5).

Table 1. A summary of the different approaches to systematic effects, showing the effect on the
likelihood surface and the primary problem that each method encounters.

Approach Broadens likelihood Bias likelihood Problems

Marginalize √ × Choice of parametrization
Bias formalism ×† √ Need to assess all allowed functions

†Only in the case that the systematic is subdominant to the signal.
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Figure 2. The left-hand panel shows the toy model signal, the fiducial
model is shown in red (dark grey) and we have added some simple Gaussian-
distributed data points about this central model. We also show an example
systematic in (light) grey defined in equation (15). The right-hand panel
shows the two-parameter 1σ error contours without a systematic (black)
and including the example systematic (red/dark grey). The fiducial model is
marked by +.

Table 2. This table compares the Fisher matrix predictions
with values found using some simple mock data described
in Section 3.3. This is not a comparison of the systematic
methods themselves, which will be done in Section 4.3.

No Systematics
Parameter Measured error Expected error
a0 0.100 0.099
a1 0.011 0.011

Bias method
Parameter Measured bias Expected bias
a0 0.003 0.002
a1 0.040 0.040

Marginalizing method
Parameter Measured error Expected error
a0 0.120 0.119
a1 0.012 0.013

Note. The upper table shows the marginal errors found us-
ing the data shown in Fig. 2 for the parameters a0 and a1

defined in equation (14). These errors are compared to what
is expected from the Fisher matrix (equation 5). The middle
table shows the measured bias when a simple systematic is
added (equation 15) and compares this to the expected bias
calculated using equation (12). The lower table shows the
increased marginalized errors on a0 and a1 when a simple
parametrized systematic model is marginalized over.

We then introduce a simple systematic into the model by assum-
ing a simple function [note that this does not have a mean of zero,
but could fit into some boundary centred on C(x) = 0]

C
sys
example(x) = −0.2 + 0.15x − 0.01x2. (15)

By recalculating the likelihood and including this systematic func-
tion, using equation (11), we find that the most likely value of a0

and a1 is biased and yet the marginal errors remain the same. We
compare this bias to the prediction made using equation (12) in
Table 2.

To test the method of marginalizing over data, we now reset
the systematic (throw away equation 15) and introduce a simple
systematic which is measured using some mock data. Fig. 3 shows
the model signal with some extra systematic data with a mean of zero
and a scatter of σCsys = 0.5. We then introduce a simple systematic

Figure 3. The left-hand panel shows the model signal, the fiducial model
is shown in red (dark grey) and we have added some Gaussian-distributed
data points about this central model. We also show an example data-driven
systematic blue (light grey) points about C(x) = 0 with a variance of σCsys =
0.5. The right-hand panel shows the two-parameter 1σ error contours with
(green/light grey) and without (black) marginalizing over the systematic
model. The red lines show the marginal error with no extra systematic data,
a complete degeneracy between a0 and s0. The fiducial model is marked
by +.

model parametrized by a new parameter s0

C
sys
theory example(x) = s0 (16)

and fit the model (equation 14) and the systematic to the data si-
multaneously, as described in equation (6). The total likelihood
p(a0, a1, s0) is then marginalized over s0. Fig. 3 shows that when
this extra systematic is marginalized over the constraint on a0 it
is affected the most since s0 has the same functional form as this
parameter, and so there exists a large degeneracy between a0 and s0.
The exact degeneracy is broken by the extra data available for the
systematic. In Table 2, we show the increase in the marginal error
on the parameters a0 and a1 when we marginalize over the extra
systematic parameter s0.

We have now introduced the basic formalism and shown that this
can be applied to a simple example that yields results which are in
good agreement with the Fisher matrix predictions.

4 FO R M - F I L L I N G FU N C T I O N S

For the remainder of this article, we will present an alternative to
marginalization by advocating the bias formalism for dealing with
systematics, outlined in Section 3.2. The issue with which one is
now faced is what function to choose for the residual systematic. To
investigate the full extent of possible biases, allowed by the tolerance
on the systematic, all allowed functions must be addressed in some
way.

In Fig. 4, we use an extension of the simple model, outlined
in Section 3.3, to introduce the concept of two different forms of
systematic tolerance. The tolerance envelope could have a hard
boundary (e.g. defined by a theory which states that ‘the systematic
must lie within this boundary’), or the systematic could be defined
by some extra data that have partially measured the magnitude of
the systematic. We will refer to these two scenarios as the ‘hard
bound’ and ‘data bound’, respectively.

To fully assess the level of bias, every functional form allowed
by the systematic tolerance envelope needs to be tested. For the
hard boundary, we want to find every function that can be drawn
within the hard boundary. For the data bound, every function can be
weighted with respect to the data themselves. Here, we introduce
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Figure 4. Representing the two possible systematic constraints, either from
theory or from data. A hard boundary (left-hand panel; solid grey lines) may
be defined within which the systematic must lie, or some data may provide
a measurement of the level of systematic (right-hand panel; blue/light-grey
error bars). The black data points are mock data with a Gaussian distribution
using the model described in Section 3.3, the red (dark grey) line is the
fiducial model.

the concept of ‘form-filling functions’ which is a set of functions
that should exhaustively fill the space of possible functions allowed
by some tolerance envelope.

Consider the hard bound in Fig. 4, in the bias approach we want to
find every function that will fit within this tolerance envelope. To do
this, we consider functions in the most general form as expansions
in some arbitrary basis set

f (x; {an}, {bn}) =
N∑

n=1

anψn(x) + bnφn(x), (17)

where an, bn ∈ � and ψn(x) and φn(x) form some arbitrary ba-
sis functions. To choose the basis set, we impose the following
conditions.

(i) The basis set must be complete in the range of x we are con-
sidering, i.e. all functions f (x) must be expressible as an expansion
in the basis.

(ii) The basis functions must be orthogonal.
(iii) The functions must be boundable, i.e. the basis set must be

able to be manipulated such that every function described within
some bounded region (tolerance envelope) can be drawn.

The first condition is necessary. The second condition is to make
some calculations more straightforward though is not strictly nec-
essary. The third condition is merely desirable – one can imagine
having a basis set in which non-bounded functions are allowed, but
when using such expansions one would have remove these stray
functions. As an aside, we note that overcompleteness is not a prob-
lem as long as the basis set is in fact complete (we do not care if we
sample a function multiple times, as long as we sample it at least
once).1

Algorithm. Equation (17) represents every function, however we
are only concerned here with defining all functions within some
bounded region. To begin we will show how an interval |an| ≤ Q

can be defined such that every function between |f (x)| ≤ 1 can be

1 Orthogonal basis sets are never overcomplete, so the second condition
means we should not be in this situation for our functional form-filling
algorithm.

drawn. For an orthonormal basis set, the coefficients needed to draw
a function f (x) can be expressed as

an = Anm

∫
R

dxw(x)f (x)φm(x), (18)

where R is some interval over which the basis set is complete and
w(x) is a weight function upon which the basis set is complete the
constant A (Amn is a diagonal) is calculated in general using

A−1
nm =

∫
R

dxw(x)φn(x)φm(x) (19)

for all the basis sets we consider Anm = Aδnm. Now we can write
a general expression that provides a limit on an. Using the triangle
inequality, we can write

|an| ≤ A

∫
R

dx|w(x)||φn(x)||f (x)| (20)

and given that |f (x)| ≤ 1 we have an expression for |an|

|an| ≤ A

∫
R

dx|w(x)||φn(x)||f (x)| ≤ A

∫
R

dx|w(x)||φn(x)| = Q.

(21)

So using equation (17) and limiting the coefficient values to |an| ≤
Q (and similarly for bn), every function with the region |f (x)| ≤ 1
can be drawn.2

We now define an arbitrary ‘bound function’ B(x) which describes
a hard boundary (e.g. in Fig. 4) where at any given point in x the
systematic functional form must lie in the region − B(x) ≤ f (x) ≤
B(x). Equation (17) is simply modified to include this arbitrary
boundary

f (x; {an}, {bn}) = B(x)
N∑
n

anψn(x) + bnφn(x). (22)

Now, if the basis set is complete, N = ∞ and |an| ≤ Q (similar
for bn), equation (22) represents every possible function that can
be drawn within the hard bound – and each function could yield a
different bias. Note however that this statement says nothing about
the probability that a particular function will be drawn.

An important caveat to this is that the total set of functions drawn
using this algorithm is not bounded, only some subset of the func-
tions is. However, a ‘clean’ subset of functions with |f (x)| ≤ B(x)
can easily be drawn by removing any function for which |f (x)| >

B(x) at any x.
In practice, where N < ∞ the task of drawing all possible func-

tions becomes a numerical/computational problem. For a given ba-
sis set, the fundamental quantities that describe each and every
function are the coefficients an and bn. The task then is to explore
the coefficient parameter space {|an| ≤ Q} in an exhaustive a man-
ner as possible.

As a first attempt, the approach taken in this article is to randomly
and uniformly sample the coefficient space {a1, . . . , aN} for |an| ≤
Q. The free parameters in this approach, given a basis set, are the
maximum order investigated N and the number of random samples
in the space {an} that are chosen. We leave a more sophisticated
Monte Carlo formulation of this problem for future work.

2 Equation (21) is strictly only true for Riemann integrable functions, how-
ever essentially all bounded functions satisfy this constraint – in particular
all class C0 (smooth) functions, and all step functions. Examples of the type
of (very peculiar) function that are not Riemann integrable are Dirichlet’s
function and the Smith–Volterra–Cantor set.
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When truncating the series we will be missing some highly os-
cillatory functions (for the basis sets considered), but we show in
Appendix B that one can always make a definitive statement about
the fraction of all functional behaviour sampled down to some scale.
These free-form functions are regularized by the truncation of the
basis set and by the bound function. Throughout the remainder
of this section, we use the numerical order and function number
investigated in Appendix B.

Basis sets. Throughout we will principally consider three different
basis sets. These are as follows.

(i) Chebyshev polynomials Tn(x). These functions form a com-
plete basis set for −1 ≤ x ≤ 1, and are bounded by the region |f (x)|
≤ 1. To map these functions on to an arbitrary x-range, a variable
transformation can be applied such that

ψn(x) = cos[n arccos(x)] = Tn

(
2x − xmin − xmax

xmax − xmin

)
, (23)

and φn(x) ≡ 0 for all n.
(ii) Fourier series. The Fourier series is a complete basis set in

the range −π ≤ x ≤ π and the functions are bounded in the region
|f (x)| ≤ 1 for the basis set

ψn(x) = 1

2
cos

[
n

(
πx − πxmin

xmax − xmin

)]
φn(x) = 1

2
sin

[
n

(
πx − πxmin

xmax − xmin

)]
. (24)

The cosine and sine of a real number are |cos(x)| ≤ 1 and
|sin(x)| ≤ 1.

(iii) Top-hat functions (binning). This uses a top-hat functional
form and is meant to be analogous to binning the x-range. The
maximum order in equation (17) N here refers to the number of
bins where for the nth bin ψ(x) is either zero or one depending on

whether x lies within the bin

ψn(x) =
{

1 ∀(xn − �x/2) ≤ x ≤ (xn + �x/2)

0

= H

(
x − �x

2

)
− H

(
x + �x

2

)
, (25)

where xn = xmin + (n − 1)�x and �x = (xmax − xmin)/(N − 1) is
the bin width. φn(x) ≡ 0 for all n.

Table 3 summarizes some of the basis set properties including
the coefficient intervals over which a complete (sub)set of functions
with |f (x)| ≤ 1 can be drawn.

One may be concerned that there will always be some x at which
a boundary-touching function cannot be drawn. For every finite
maximum index N in the sum of equation (22), one can find a value
of x in R such that f (x) cannot be 1 at x. The key realization that we
stress here is that this is a actually a statement about the scale upon
which the space of functions is complete. The larger the maximum
order N, the smaller one can find an ε with ψn(x ± ε) = 1 for some
n, i.e. the concern is reduced to an issue of resolution because if
ε � s then every function complete down to some scale s can be
drawn. We show this in Appendix B.

4.1 Hard bound

Fig. 5 shows an example of a hard boundary and a random assort-
ment of functions (a random, uniform, sampling of {a1, . . . , aN};
and {b1, . . . , bN} for the Fourier basis set) for the Chebyshev,
Fourier and top-hat basis sets. As the order and number of functions
are increased, the functional forms begin to completely fill in the
bounded area (hence ‘form-filling functions’).

It can be seen even at this stage that the top-hat basis set
is not efficient at filling the bounded area. This is investigated

Table 3. This table lists some constants and functions associated with the basis sets used in this article, Chebyshev, Fourier and top-hat functions.
Some of these constants are defined before and used in equation (21). The coefficient interval is such that for |an| ≤ Q all function in with |f (x)| ≤
1 can be drawn.

Basis set Basis functions Orthogonal weight w(x) Orthogonal constant A Interval R Coefficient interval Q

Chebyshev Tn(x) = cos(n arccos(x)) (1 − x2)−
1
2 1

π
for n = 0; 2

π
for n �= 0 [−1, 1] 1 for n = 0; 4

π
for n �= 0

Fourier 1
2 for n = 0, cos (nx) & sin (nx) 1 1

π
[−π, π] 2 for n = 0; 4

π
for n �= 0

Top-hat H(x- �x
2 )+H(x+ �x

2 ) 1 1 [−1, 1] 1

Figure 5. An example of a bounded area (thick black lines), and a random sampling of 15 functions shown by thin coloured (grey and black) lines. Every
function is defined, using equation (22) so that it must fit within the bounded area. In the left-hand panel, we used the Chebyshev basis set, in the central panel
we use the Fourier basis set and in the right-hand panel we use the top-hat basis set (binning). For all basis sets, the maximum order is N = 15. The functions
are defined by uniformly and randomly sampling the coefficient space {a1, . . . , a15}. This figure is meant simply as a example of the type of function that
can be drawn not as a measure of whether the method succeeds in drawing all functions. The success of the method in drawing all functions is shown in an
extensive fashion in Appendix B.
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further in Appendix B where we show that whilst all of the basis
sets considered can fill any desired bounded region, the Chebyshev
and Fourier basis are many orders of magnitude more efficient in
terms of computational time than the top-hat functions (binning);
we discuss computational time in Appendix C. This is a result of
the restrictive step-like nature of the functions that binning imposes
requiring a high order (number of bins) to characterize particular
(smooth) functional behaviour. In addition to being inefficient, the
top-hat basis is not differentiable at the bin boundaries and as such
could be construed as being unphysical, although in some special
circumstances (e.g. photometric redshifts where a filter may have a
top-hat function in wavelength) a top-hat basis set may be needed.

The key feature of the hard bound is that within the boundary all
functions are given equal weight, i.e. the probability that any given
function is the ‘true’ systematic functional form is the same for
all functions. Out of the full range of possible biases given a hard
boundary, there should exist a maximum bias – because the space of
functions and hence the range of biases is limited. We show that this
is the case in Appendix D. The quantity of interest is therefore this
maximum bias that is allowed by the functions that can be drawn
within the hard boundary. In the data boundary case (Section 4.2),
there is a maximum bias for each subset of functions that give the
same weight (with respect to the data).

One intuitively expects that the systematic function that intro-
duces the largest bias should be the one that most closely matches
the signal term containing each parameter. In the case where there
are degeneracies between parameters, the worst function is some
combination of the signals sensitivity to the parameters. Here, we
will use the simple example hard bound from Section 3.3 to demon-
strate that in this case a maximum bias exists, and that this maximum
is stable with respect to basis set.

Fig. 6 shows the maximum bias on a0 as a function of the number
of random realizations of the coefficient space for the Chebyshev,
Fourier and top-hat systematic basis sets, for all sets we consider
a maximum order of 100. It can be seen that as soon as the ‘worst
function’ is found the maximum bias becomes constant and stable
for the Chebyshev and Fourier basis sets. In this case, the worst

Figure 6. Using the simple example from Section 3.3. The maximum bias
on a0 as a function of the number of realizations of the systematic basis set’s
coefficients. Red (dark grey, upper line) shows the maximum bias found
using the Chebyshev basis set, green (light, middle line) grey shows the
maximum bias for the Fourier basis set and blue (darkest grey, lower line)
for the top-hat basis set.

function is simply Csys(x) = x since this is the function that af-
fects the signal [Csig(x) = a0 + a1x + constant] the most through
the effect on a1 (the worst function is a linear combination of the
response of each individual parameter in the marginalized case,
see Appendix D). There is an exact degeneracy since a function of
the form − f (x) will cause a bias of equal magnitude but opposite
sign to f (x), so Csys(x) = −x in this case will also cause the same
absolute bias (see Appendix D). For the top-hat basis set, it is very
unlikely to find this particular worst function so the bias does not
find the maximum even after 100 realizations. The Chebyshev basis
set finds this function after only a few realizations since ψ1(x) =
T 1(x) = x is one of the basis functions of the Chebyshev expansion.

Fig. 6 is meant simply as an example of the type of conver-
gence test that could be performed given a realistic application. In
Appendix B, we outline a diagnostic mechanism that can gauge
whether a bounded area has been completely filled with functions.

4.2 Data bound

If the systematic has been partially measured using data, then there
is no hard boundary within which all functions must lie, and every
function is still allowed to some degree. The issue which must be
addressed in this case is how each function should be weighted
given the data available – a function is more likely to be the ‘true’
systematic signal if it is a good fit to the systematic data.

For the case of a data bound, we propose a similar approach to the
hard bound. We want to explore all possible functions, to do this we
express an arbitrary function using an expansion as in equation (22).
By choosing a complete basis set (e.g. Chebyshev, Fourier), the full
space of functions can be explored by exhaustively exploring the
space of coefficients, as described in Section 4.1.

In the following, we will concatenate the two basis sets {an} and
{bn} for clarity, however note that for the Fourier basis set two sets
of coefficients are needed.

The critical difference in this case is that for each function
f (x;{an}) that is drawn we can assign a weight W ({an}) using
the χ 2 statistic

χ 2 =
∑

x

[f (x; {an}) − C̃sys]2

σ 2
Csys

. (26)

This quantifies how good a fit the function (the values of an and bn,
and some basis set) is to the residual systematic data.

However, since we aim to exhaustively try every function (com-
plete down to some scale) there will exist some functions that fit
exactly through the data points. This causes a problem when using
the χ 2 statistic as a weight for such functions will have a χ 2 ≡ 0,
and hence be given a probability P = 1 that such a function is likely,
but such a conclusion has not taken account of the error bars on the
systematic data.

In this simple example, we have subtracted the mean of the sys-
tematic signal so data should be scattered about C(x) = 0. In the case
of Gaussian-distributed data, the scatter of the data points should be
proportional to the error bar on each data point. If the observation
could be repeated, then the data points would be scattered in the
same statistical manner about C(x) = 0 but have different actual
values. This is very similar to the familiar sample variance; in cos-
mology, we are used to a special kind of sample variance that we
call cosmic variance in which the likelihood of the data, given only
one realization of our Universe, must be taken into account.

To take into account this sample variance effect, we must consider
the likelihood of the residual data. In Appendix E, we show how for
Gaussian-distributed data the probability of a function f (x;{an}),
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given some set of observations, can be written as a sum over x,
where at each point there are some data with an error bar σCsys as

ln p[f ({an})] ∝ −
∑

x

[
f (x; {an})2

4σ 2
Csys

]
+

∑
x

ln(σCsys
√

π), (27)

where we have translated the notation of equation (E4) to reflect
that of equation (26). For any given set of data, the second term in
equation (27) is a benign additive constant so the weight that we
assign each function is

W ({an}) =
∑

x

[
f (x; {an})2

4σ 2
Csys

]
. (28)

We stress that this is for Gaussian data with a known mean of zero
such a function is uniquely described by the variance.

In general, data may not be exactly centred at zero or be Gaussian
distributed. As an alternative to the analytic procedure of marginal-
izing over the data, one could create Monte Carlo realizations. For
each realization, one could measure the χ 2 of the fit of a given
function to the data from equation (26) and assign a weight as the
average over all realizations

W ({an}) = 1

2

〈∑
x

[
f (x; {an}) − C̃sys

]2

σ 2
Csys

〉
realizations

, (29)

where the extra factor of 1/2 converts the average χ 2 to a log-
likelihood similar to equation (28).

The bound function in equation (22) represents a hard prior in
this case. One should choose a bound function is much larger than
the scatter in the systematic data B(x) � σ sys(x). Any functions
that deviate from the data by a large amount will be down-weighted
by the poor fit even though they may yield a large bias, so as long
as the boundary within which functions are considered is B(x) >

3σ sys(x) away from the data then any results should be robust.
For each function f (x; {an}), one now has an associated bias and

a weight. Now consider a particular bias in some parameter: there
exists a set of systematic functions that could yield this same bias
and from that set there must exist a function which is the best fit
to the data. If each best-fitting function for every bias can be found,
then one is left with a robust weight for each bias and a measure of
the relative probability allowed by the data

p(bi) ∝ exp[− min[W (bi ; {an})]], (30)

where min[W (bi; {an})] is the minimum weight (equation 28) from
the space of functions defined by the coefficients {an} that yields
the bias bi.

Another way of putting this is that for a given weight there exists
a maximum and a minimum bias. We show in Appendix D that,
within the Fisher matrix approximation of equation (12), there does
indeed exist a maximum and minimum bias for each weight.

Fig. 7 shows the weight (equation 28) for each function drawn
from the Chebyshev, Fourier and top-hat basis sets against the bias
induced by the function using the data bound toy model of Fig. 4.
It can be seen from this figure that for any given bias there exists
a minimum weight that can be achieved by the functions giving
that bias. In the right-bottom panel of Fig. 7, we have found the
minimum weight for each bias and converted this into a likelihood
using equation (30) showing that this procedure is robust to the
choice of basis set used (though the top-hat basis set is far less
efficient than Chebyshev and Fourier, see Appendix B for more
details).

Figure 7. The three scatter plots show the bias in the parameter a0 caused
by fitting functions through the data bounded systematic shown in Fig 4
against the weight given to the function with respect to the systematic
data points given in equation (28). Each point represents a function. The
colours correspond to the different basis sets considered blue (darkest grey,
bottom-left panel) is top-hat functions, red (lighter grey, top-left panel) is
Chebyshev functions and green (lightest grey, top-right panel) is Fourier
functions. Also shown is the likelihood of the bias in a0 for each ba-
sis set, found by measuring the minimum weight for a particular bias –
the lowest extent of the scattered points in the other plots – and using
equation (30).

One can of course extend the formalism introduced here to an
arbitrary number of dimensions. To extend this to two dimensions,
we have modified the simple example to have a much smaller data
bound, since (as can be seen in Fig. 7) the fiducial scatter in the
toy model systematic data introduces large biases in the measured
parameters. Fig. 8 shows the joint 1 − σ statistical constraint on a0

and a1 for the mock data shown. On this same plot, we show the
systematic 1 − σ contours from the residual systematic – within
the systematic contour there is a ≥68 per cent probability that the
statistical maximum likelihood is biased.

We again show results for two different basis sets and show
that the systematic contours are again independent of the basis set
chosen. We have not used the top-hat basis because it is not an
efficient basis set (in terms of computational time, see Appendix B)
to use even for a one-dimensional analysis.

In a real application, one would hope to show such plots with
the systematic contours lying within the statistical ones, but for
illustrative purposes we have shown a dominant systematic here.
A hard bound in this case would represent a top-hat contour in
probability where, within the contour, the probability equals unity
and outside the contour the probability is zero.

In the marginalization approach, one could also draw two sets
of contours, but both would be statistical: one that has no system-
atic and the other in which a systematic has been included. Fig. 8
represents one of the key recommendations of this article that in
future we must not only show statistical contours for cosmological
parameters but also systematic probability contours. Here, we have
shown one way of obtaining a robust estimate of such systematic
probability contours.
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Figure 8. The left-hand panel shows the modified simple example, see
Section 3.3, where we have made a more tightly constrained Gaussian
residual systematic with σCsys = 0.05 for clarity, this can be compared
with the right-hand panel in Fig. 4. The right-hand panel shows the 1σ

statistical constraints on a0 and a1 (black solid line). In addition, we show
the systematic probability contours for the residual data bound in the left-
hand panel. Shown are the 1σ systematic contours using both a Chebyshev
(red, dark grey line) and a Fourier (green, light-grey line) basis set for
functional form filling.

4.3 Marginalization versus bias

The bias and the marginal error are interrelated via the MSE which
is defined, for a parameter ai, as

MSE = σ 2(ai) + b2(ai), (31)

where σ (ai) is the marginal error on ai and b(ai) is the bias. So both
marginalization over systematic parameters and functional form
filling increase the MSE through the marginal error and bias, re-
spectively.

In Appendix A, we show that the marginalizing approach and
the functional form-filling approach are different; however, there
is a subtlety. If the parametrization and order are the same (i.e. a
truncated basis set is used), then the MSE recovered from marginal-
izing or considering the bias is the same. The conclusions from
Appendix A are as follows.

(i) If the functional form of the systematic is known, then the
degradation in the MSE as a result of marginalizing or functional
form filling (bias) is the same.

(ii) If the functional form of the systematic is unknown, then the
MSE from marginalizing will tend to underestimate the true sys-
tematic error and is in general not equal to the MSE from functional
form filling.

(iii) Given that the marginalizing necessarily truncates the ba-
sis set, there are always some functions that marginalizing cannot
assess.

Given that the MSE, given a particular functional subset, is
the same for bias and marginalization the key difference between
marginalization and functional form filling is that in the marginal-
ization case the functional space is truncated by the choice of
parametrization and ultimately by the number of data points.

Looking back at Fig. 7, the functional form-filling technique
fills out the weight–MSE (bias) bounded region by sampling ev-
ery function down to some scale. To illustrate the way in which
marginalization cannot sample the full space of functions, we have

Figure 9. The weight (fit to the systematic data) against the bias in the
parameter a0 for the toy data bounded systematic shown in Fig. 4. We
truncate the Chebyshev and Fourier basis sets at N = 1 (black dots) N = 10
(red, green – light-grey dots) and N = 50 (blue, dark grey dots). For each
order, we make 500 realizations of the basis set.

reproduced these plots but using various truncated basis sets. Note
that the MSE from the bias and marginalization is the same given
a parametrization as shown in Appendix A – marginalizing is like
functional form filling but with a very restricted class of function.

Fig. 9 shows the weight (fit to data) versus bias using the simple
toy model for the Chebyshev and Fourier truncated basis sets for
500 realizations of each truncated set. We truncate the expansion at
N = 1, 10 and 50. It can be seen that if N = 1 is used the space of
functions is very restricted, and as the order is increased the space
of functions increases. These results are also in resonance with
Appendix B. If one were marginalizing, a choice of parametrization
(basis and order) would have to be made in which case the MSE
conclusion would be dependent on this choice.

4.4 Discussion

We take this opportunity to discuss the difference between marginal-
izing and functional form filling. Functional form filling is not the
same as marginalizing over a very large parameter set on a qualita-
tive level: we are not finding the best-fitting values of the parameters
but rather using each parameter combination simply as a prescrip-
tion that yields a particular bias. As the freedom in the functions
increases (more parameters), the functional form-filling approaches
a stable regime in the results it gives. Functional form filling yields
the probability that the maximum-likelihood value is biased by
some amount, whereas marginalization yields a probability that the
cosmological parameters take some value jointly with some values
of the nuisance parameters.

One could marginalize over a very large number of parameters,
but in this case the joint covariance matrix will at some point nec-
essarily become computationally singular as parameters introduced
cannot be constrained by the data. One way to consistently include
more parameters than data points N is to add a prior such that any ex-
tra parameters were constrained P (A|D) = ∫

dBP (A, B|D)P (B),
where A = N and (A + B) > N ; but this requires adding the prior
on P(B) which requires justification.

In the lack of any external prior, the number of parameters that can
be used in marginalizing is necessarily truncated at a low order since
once the number of free parameters becomes larger than the number
of data points (for the data bound) the parameter fitting methodology
becomes ill-posed (e.g. Sivia 1996). In contrast, the functional form-
filling technique could use an infinite basis set expansion (only
computational, and physical, resources prohibit this) since we use
the basis set simply as a prescription for drawing functions through
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the systematic – one could even draw these by hand if you were
sure that you could draw a complete set of functions.

One may be concerned that information is being ignored or dis-
carded. Quite the opposite from discarding information present in
data, we assign a weight to every possible function with respect to
the data, in this sense we throw nothing away – every function has
a weight and a bias. In contrast, when marginalizing the functional
space assessed is limited by the number of data points and as such
a very large class of functions is never considered – if a basis set is
truncated, these are usually highly oscillatory functions.

The bias formalism becomes preferable if there is uncertainty
over what the functional form is (which is most, if not all of the
time).

In Appendix A, we show that for the same basis set and prior
functional form filling and marginalization produce the same results
in an MSE sense. Hence, in the limit of marginalizing over functions,
with suitable priors, the two approaches should produce the same
results – in this article, we focus on bias functional form filling.

4.5 Summary

We have presented an algorithm by which any function within a
bounded region can be drawn. This is summarized as follows.

(i) Choose a complete orthogonal basis set. We recommend
Chebyshev polynomials because of their ease of calculation and
computational efficiency (see Appendix B).

(ii) Use equation (21) to calculate the interval an ∈ [−Q, Q] over
which the coefficient must be sampled.

(iii) Define the bounded region B(x) within which functions must
be drawn.

(iv) Define a scale �x upon which the functional space must be
complete.

(v) Randomly and uniformly sampled from the space of coeffi-
cients using a maximum order N and number of realizations such
that the functional space is fully filled – the diagnostic tools from
Appendix B can be used to gauge the level of completeness.

By defining the hard and data bounds, we have now presented all
the tools needed to correctly assess a systematic given some prior
knowledge of the magnitude of the effect, either an external data set
or some theoretical knowledge. In the hard boundary case, every
function is given equal weight and as such a maximum bias should
exist. In the data boundary case, a probability can be assigned to
each bias.

We emphasize here that this method requires there to be at least
some information at every data point associated with the signal –
either a hard boundary or some systematic data. If there were no
constraint, the ranges of biases could become unbounded.

Our proposal is that when measuring some cosmological pa-
rameters, these techniques can be used to augment the statistical
marginal error contours: some cosmological parameters are mea-
sured and about their maximum-likelihood point are drawn some
marginalized statistical error contours, and in addition:

(i) if a theory or simulation provides a hard boundary to some
systematic, then the maximum bias will define a systematic contour
that can be drawn in within which the maximum likelihood could
be biased,

(ii) if some data are provided that measures the systematic, then
a further set of systematic contours can be drawn which will show
the probability that the maximum-likelihood point is biased by any
particular amount.

The goal for any experiment is to control systematic effects to such
a degree that any systematic contours drawn are smaller than the
statistical contours.

We will use the functional form-filling approach in the next sec-
tion to place requirements on weak lensing systematics. For general
conclusions, please skip to Section 6.

5 A N A PPLI CATI ON TO C OSMI C SHEAR
SYSTEMATICS

We will now use the functional form-filling approach to address
shape measurement systematics in cosmic shear (due to meth-
ods Heymans et al. 2006; Massey et al. 2007; or PSF inaccu-
racies Hoekstra 2004; Paulin-Henriksson et al. 2008). This sec-
tion represents an extension of the work of Amara & Refregier
(2008) where certain particular functional forms were investigated.
Here, we extend the analysis to include all functional behaviour
to fully address the impact of the systematic. For a thorough
exposition of cosmic shear, we encourage the reader to refer to
these extensive and recent reviews and web sites (Bartelmann &
Schneider 2001; Wittman 2002; Refregier 2003; Munshi et al. 2008;
http://www.gravitationallensing.net). The source code related to the
work in this section is released through http://www.icosmo.org, see
Appendix F for details.

5.1 Background

Cosmic shear tomography uses both the redshift of a galaxy and
the gravitational lensing distortion, shear, to constrain cosmolog-
ical parameters. The observable in this case is the lensing power
spectrum as a function as redshift and scale C�(z). Since we have
redshift information, the galaxy population is split into redshift bins
where each bin has its own autocorrelation function and the cross-
correlations between bins are also to be taken.

Throughout this section, we will use a fiducial cosmology of
�m = 0.3, �DE = 0.7, �B = 0.0445, h = 0.7, w0 = −0.95, wa =
0.0, σ 8 = 0.9, ns = 1.0, where we parametrized the dark energy
equation of state using w(z) = w0 + wa(1 − a) (Chevallier &
Polarski 2001; Linder 2003) and included the spectral index ns, we
consider non-flat models throughout where �k = 1 − �m − �DE.
We assume a weak lensing survey (similar to the DUNE/Euclid
proposal; Refregier et al. 2008a) which has an area = 20 000 deg2,
a median redshift of zm = 0.8 [using the n(z) given in Amara
& Refregier 2008] with a surface number density of 40 galaxies
arcmin−2. We also assume a photometric redshift error of σ z(z) =
0.03(1 + z) and split the redshift range into 10 tomographic bins.

The observed lensing power spectrum can be written as a sum of
signal, systematic and noise terms

Cobs
� = C lens

� + C
sys
� + Cnoise

� , (32)

so that an estimator of the observed lensing power spectrum can be
written by subtracting the shot-noise term Cnoise

�

Ĉ lens
� = C lens

� + C
sys
� , (33)

where C lens
� is the underlying true lensing power spectrum, depen-

dant on cosmology, which we want to measure and C
sys
� is some

residual systematic. The error on this estimator can be written as

�C� =
√

1

(2� + 1)fsky

(
C lens

� + C
sys
� + Cnoise

�

)
(34)

note that this is the error on the observed signal, not the observed
signal itself, so that as the systematic increases the error on the
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Table 4. The marginal error on each cos-
mological parameter for the fiducial weak
lensing survey with no residual system-
atic. Note that no priors have been added
on any parameter.

Parameter Marginal error

�m 0.006
�DE 0.036
�B 0.015
h 0.086
w0 0.046
wa 0.152
σ 8 0.009
ns 0.019

observed C� increases. The Fisher matrix and bias are then defined
in the usual way (equations 5 and 12) where σC = �C�. Table 4
shows the expected marginal errors on the cosmological parameters
using the fiducial survey calculated using the Fisher matrix formal-
ism, note that no prior has been added to these results, they are for
lensing alone.

The additive systematic which we consider here is a special kind
that has the same shape as the lensing power spectrum but where
it is multiplied by some unknown systematic function (sometimes
referred to as a multiplicative systematic) A1 (we use the notation
of Amara & Refregier 2008)

C
sys,ij
� = A1C

ij

� , (35)

where ij means the correlation between redshift bins i and j, an
autocorrelation is where i = j . The particular form of multiplicative
bias we consider is that which causes the true shear, as function of
angle and redshift γ lens (θ , z), to be incorrectly determined such that
the residual systematic shear γ sys (θ , z) is related to the true shear
by some function m(z)

γ sys(θ, z) = m(z)γ lens(θ, z). (36)

So that the systematic given in equation (35) can be written
Csys,ij = [m(zi) + m(zj)]Cij

�. This expression from Amara &
Refregier (2008) actually assigns an m(z) to each redshift slice
where each m(z) is the bin-weighted average. A more accurate ap-
proach is to include m(z) in the integrand of the lensing kernel (ξ+/−
in appendix A of Amara & Refregier 2008). We compared results
when the bin-weighted average was used against the correct inte-
gral method and found exact agreement, this is because the bins are
narrow and the functional variation on subbin-width scales is small.

We note that Huterer et al. (2006) have used Chebyshev polyno-
mials in weak lensing systematic analysis, although they marginal-
ize over a systematic parametrized using Chebyshev polynomials
and then investigate the biases introduced if the most likely value
of the estimated coefficients were incorrect. Here, we are not mea-
suring the Chebyshev coefficients but rather using this basis set to
draw every possible function and determine the bias introduced by
the function itself not some misestimation of any particular coeffi-
cient. The approach outlined in this article also has a resonance with
the work of Bernstein (2008) in which flexible basis sets are used
to address systematic quantities, although this is done within the
self-calibration (marginalizing) framework, and their general thesis
is that of tuning the models that are marginalized over. Bernstein
(2008) notes that an approach such as the one outlined in this ar-
ticle, using the formalism of Amara & Refregier (2008), would be
desirable in certain situations.

5.2 Functional form filling for m(z)

We will now place constraints on the function m(z) such that that the
measurement of the cosmological parameters are robust. We first
define some boundary (bound function) on m(z) such that any sys-
tematic function must lie within the bounded region. We parametrize
the hard boundary (Section 4.1) using

|m(z)| = m0(1 + z)β, (37)

we want to know what values of m0 and β are sufficient to ensure
that the bias on cosmological parameters b(θ i) are less than their
statistical error σ (θ i); |b(θ i)/σ (θ i)| ≤ 1. We stress that this is a
parametrization of the boundary within which a function must lie,
not the function itself.

To fill the bounded area with every functional form, complete
down to the scale of �z = 0.2, we use Chebyshev polynomials with
a maximum order of N = 35 and investigate NF = 104 realizations
of the basis set, using the formalism outlined in Section 4. We
do not expect any of the cosmological parameters to introduce
features into the lensing power spectrum on scales �z < 0.2, so this
should be sufficient. Fig. 10 uses the diagnostic measure described
in Appendix B to show that on the scale of �z = 0.2 every possible
functional behaviour has been experienced at every point within
the bounded region, for this example we use m0 = 1 × 10−3 and
β = 1.0.

To begin we will first consider m(z) with m0 = 1 × 10−3 and β =
1.0. Using the functional form-filling technique, we have identified
which systematic functions cause the largest bias for each cosmo-
logical parameter. Table 5 shows the maximum bias to marginal

Figure 10. This plot shows the bounded area defined using equation (37)
with m0 = 1 × 10−3 and β = 1.0, shown by the solid black lines. This
area is then pixelated, and the functional behaviour that can occur at each
pixel is measured. The colours correspond to the percentage of functional
behaviour that has been experienced for each pixel, this is described in detail
in Appendix B.
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Table 5. The ratio of bias to marginal
error for each cosmological parameter
for the fiducial weak lensing survey and
a multiplicative systematic of the form
given in equation (37) with m0 = 1 ×
10−3 and β = 1. A negative value implies
that the bias is negative.

Parameter Bias/marginal error

�m −0.837
�DE 0.813
�B −0.481
h −0.483
w0 1.253
wa −0.999
σ 8 0.855
ns 0.868

Figure 11. This plot shows the bounded area defined using equation (37)
with m0 = 1 × 10−3 and β = 1.0, shown by the solid black lines. Plotted
within this area are the functions, out of all the possible functions that could
be drawn within the bounded region, that cause the largest bias on each
cosmological parameter, denoted by the panel title.

error ratio for each cosmological parameter due to this particular
m(z).

We have taken into account all degeneracies between parameters
in this exercise – in the terminology of equation (12), the inverse
Fisher matrix is marginalized over all parameters and the Bj takes
into account degeneracies between the cosmology and systematic
functions.

Fig. 11 shows the worst functions, that cause the largest bias, for
each cosmological parameter. Since there are degeneracies between
all parameters, the worst function is practically the same for all
parameters.

We find that the ratio of the maximum bias to the marginal error
is <1 for most parameters, except b(w0)/σ (w0) = 1.25 which is not
acceptable: the bias is larger than the statistical error. These results
are in rough agreement with Amara & Refregier (2008) where
it was concluded, with a restricted functional parametrization of
m(z), and the assumption of a flat Universe that m0 = 1 × 10−3 and

Figure 12. The ratio of maximum bias, found using functional form filling,
to marginal error as a function of m0 and β for w0. The grey scale represents
the bias to error ratio with a key given on the side of each panel. The solid
lines show the b(θ i)/σ (θ i) = 1 contours for each parameter.

Figure 13. The solid lines show the |b(w0)/σ (w0)| = 1.0 contours in the
(m0, β) parameter space for varying survey area. Black (solid) shows the
contour for the fiducial survey with area = 20 000 deg2, red (light-grey,
dashed line) shows the contour for a survey exactly the same as the fiducial
survey expect that area = 2000 deg2 and green (lightest grey, dot-dashed
line) for a survey with area = 200 deg2. For the w0 constraint to be robust to
m(z) systematics, the values of m0 and β must lie leftwards of the contours,
see Fig. 12.

β = 1 yielded biases that were b(θ i)/σ (θ i) < 1.0 but were somewhat
on the limit of what is acceptable. Furthermore, it was concluded that
functions which have a variation (cross from positive to negative)
about z� 1 have the largest effect, we also find that the functions that
cause the largest bias in all the parameters varies in the region of z ∼
1. This is because it is at z ∼ 1 that dark energy begins to dominate
and so the parameters w0 and wa, and through degeneracies the
other parameters, are affected by systematic functions that introduce
variation at this redshift.

Fig. 12 shows the ratio of bias to marginal error as a function
of m0 and β for w0. It can be seen that the redshift scaling β

has the expected effect on the maximum systematic bias: as β

increases the maximum bias for a given m0 also increases as the
systematic bounded area expands. The solid lines in Fig. 12 show
the b(θ i)/σ (θ i) = 1 contours. For m0 = 1 × 10−3, we need a β �
0.70 for the bias on w0 to be acceptable. If the redshift scaling is
eliminated β = 0, then the requirement on the absolute magnitude
of m(z) is relaxed to m0 � 2 × 10−3.

Fig. 13 shows the affect of survey area on the requirement of
m0 and β. The lines in this figure show the |b(w0)/σ (w0)| = 1.0
contours for varying survey area. We have picked w0 as an example
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since this parameter provides the most stringent constraints on
the shape measurement parameters (see Table 5 and Fig. 12). As the
survey area increases and the marginal error on w0 decreases, the
requirement on shape measurement accuracy becomes more strin-
gent. We have fitted a simple scaling relation to these contours, so
that for statistical errors to be reliable the following relation holds:

0.17

(
m0

1 × 10−3

)2.4 ( area

20 000

)1.5
10β ≤ 1. (38)

The requirements on m0 and β for the largest survey considered
are at the limit of currently available shape measurement techniques
that yield on average m ∼ 2 × 10−3 at best (Kitching et al. 2008b;
Miller et al. 2007). A large redshift variation of m(z) results in large
biases (Fig. 11) so a shape measurement method that is unaffected
by the magnitude/size of the galaxy population should yield robust
cosmological constraints. For example, Kitching et al. (2008b) have
shown that the LENSFIT method has a characteristic m that has a small
magnitude/size dependence. In this case, β � 1.0, and a more
relaxed constraint on m0 ∼ 2 × 10−3–4 × 10−3 is required which
is well within reach of these most recent developments in shape
measurement. These results are also in agreement with Semboloni
et al. (2008) where they find that for a very restrictive class of m(z)
functions, of the form m(z) = az + b, but a more complex likelihood
description, that some parameter combinations of a and b can give
rise to biases that are less that the cosmological errors.

For the smaller surveys considered, that are well matched to
the currently available or upcoming experiments (e.g. CFHTLS,
van Waerbeke et al. 2001; Pan-Starrs, Kaiser et al. 2002), the
shape measurement techniques currently available have biases m
(Heymans et al. 2006; Massey et al. 2007; Kitching et al. 2008b)
that are well within the required level of accuracy. The caveat to
these conclusions is that here we have not discussed the size or
galaxy-type dependence of any bias and have not considered any
calibration offset in the measured shear.

6 C O N C L U S I O N

In this article, we have presented a method that allows one to move
beyond the tendency to treat a systematic effect as a statistical one.
When a systematic is treated as a statistical signal, extra parameters
are introduced to describe the effect, and then these extra nuisance
parameters are marginalized over jointly with cosmological param-
eters. We have shown that even in a very simple toy model such
an approach is risky at best. The results being highly dependent
on the choice of parametrization, and in the limit of a large num-
ber of parameters any statistical signal on cosmological parameters
can be completely diluted. One could use marginalization if there
exists a compelling physical theory for the systematic, however if
the functional form is merely phenomenological or if it contains a
truncated expansion then one should use caution. Even in the case
that confidence is high with respect to the assumed functional form
any residual must be investigated correctly.

As an alternative we advocate treating a systematic signal as such,
an unknown contaminant in the data. We address the situation where
we have at least some extra information on the systematic, either
from some theory or simulation that may provide a hard boundary
within which a systematic must lie, or from some external data set.
We leave the case of ‘entangled systematics’ (where there is no extra
information and where the systematic depends on the cosmological
parameters) to be investigated in Amara et al. (in preparation).
Throughout we have introduced each concept using a simple toy
model.

Since the systematic is treated as a genuine unknown, we must
address every possible functional form that is allowed, by either
the hard boundary or the extra systematic data. To do this, we
use complete basis sets and randomly sample from the space of
coefficients until all functional behaviours have been experienced
at every point with the hard boundary, or within a few σ of the
data. We have shown that such ‘functional form filling’ can be
achieved by this technique using either Chebyshev, Fourier or top-
hat basis sets. By treating each function as a possible systematic,
a bias in the maximum-likelihood value is introduced whilst the
marginal error stays the same. Throughout we have shown that
as long as functional filling is achieved, all conclusions on the
magnitude of a systematic effect are independent of the choice
of complete basis set – though binning is highly inefficient in
terms of computational time, and could be labelled as an unphysical
basis set.

For the case of a hard boundary, every function is given an equal
probability and as such a maximum bias exists. For the case of extra
systematic data, we show that a probability can be assigned to each
function, and bias, allowing for the production of robust systematic
probability contours.

We have made a first application of hard boundary functional form
filling by addressing multiplicative systematics in cosmic shear to-
mography; we have left an application of the data bound for future
work. We address a lensing systematic, that can result from shape
measurement or PSF reconstruction inaccuracies, that has the same
overall shape as the lensing power spectrum but is multiplied by
some extra function. This is commonly represented using a multi-
plicative function m(z) (Heymans et al. 2006; Massey et al. 2007)
where γ sys = m(z)γ true. For a DUNE/Euclid-type survey, we find
that in order for the systematic on w0 to yield a bias smaller than
the marginal error the overall magnitude of m(z) should be m0 ≤
8 × 10−4 for a linear scaling in (1 + z), but as the magnitude of
the redshift scaling is relaxed then the requirement on m0 increases
to m0 ≤ 2 × 10−3. The most recent shape measurement methods
have m ∼ 2 × 10−3 (e.g. using the LENSFIT method Miller et al.
2007; Kitching et al. 2008b) and have a small scaling as a func-
tion of magnitude/size. The results shown here then, coupled with
some currently available shape measurement techniques, imply that
constraints on cosmological parameters from tomographic weak
lensing surveys should be robust to shape measurement systematics
(with the caveat that PSF calibration and galaxy size dependence of
the bias have been neglected here).

The techniques introduced here should have a wide application
in cosmological parameter estimation: in any place in which there
is some signal with some extra information on a systematic. For
example, baryon acoustic oscillations and galaxy bias, cosmic mi-
crowave background and foregrounds, galaxy clusters and mass
selection, supernovae and light rise times, weak lensing and photo-
metric redshift uncertainties. A sophistication of these techniques
could assign different weights/prior probabilities to particular func-
tional forms, that are known a priori to have a large/small effect on
cosmological parameter determination; such weights could come
from either theoretical or instrumental constraints.

Cosmology is entering into a phase in which the statistical ac-
curacy on parameters will be orders of magnitude smaller than
anything achieved thus far. But we must take care of systematics in
a rigorous way to be sure that our statistical constraints are valid.
There exists the pervading worry that the functional forms used to
parametrize systematics are not representative of the true under-
lying nature of the systematic and that something may have been
missed. In such a scenario, one should always add the warning that
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‘cosmological constraints are subject to the assumption of the sys-
tematic form’.

Here, we have presented a way to address systematics in a way
that requires no external assumptions, allowing for robust and rig-
orous statements on systematics to be made.
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APPENDI X A : MARGI NALI ZATI ON
VERSUS BI AS

Here, we will show how marginalization is mathematically different
to the bias formalism used in the main article.

When marginalizing the log-likelihood of some cosmological
parameters θ can be written for a signal C some theory T and a
systematic S as

2L(θ ) =
∑

x

σ−2
C (C − T − S)2. (A1)

When marginalizing over the systematic, the effect is parametrized
by some extra parameters a. If extra data D is provided on the
systematic then this adds a prior such that the total log-likelihood
can be written as

2L(θ , a) =
∑

x

σ−2
C (C − T − S)2 +

∑
x

σ−2
D (D − S)2. (A2)

The Fisher matrix for this is created by taking the derivatives of
the log-likelihood with respect to cosmological parameters θ and
systematic parameters a so that the first and second terms in equa-
tion (A2) give the following Fisher matrices:

F �� =
(

F θθ F θa

F aθ F aa

)
C

+
(

0 0

0 F aa

)
D

=
(

F θθ F θa

F aθ F aa
C + F aa

D

)
. (A3)

The marginal error on the cosmological parameters is found by
inverting equation (A3). The inverse of the upper-left segment of
the Fisher matrix in equation (A3) can be found by using the Schur
complement of the block matrix and then expanding this using the
Woodbury matrix identity which gives(
F ��

upper-left

)−1 = MSEmarg

= A−1 + A−1B(E − BT A−1B)−1BT A−1, (A4)

where A = F θθ , B = F θa and E = F aa
C + F aa

D . The marginal error
in the case of no systematic (A−1) has been increased by an extra
factor that depends on the degeneracies between the systematic
parameters and the cosmological ones (B) and on the information
available on the systematic parameters themselves (E). This is also
equal to the MSE of the cosmological parameters in this case, since
no bias is introduced.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 399, 2107–2128



2122 T. D. Kitching et al.

For the bias functional form-filling technique, the log-likelihood
of the cosmological parameters can again be written as

2L(θ ) =
∑

x

σ−2
C (C − T − S)2. (A5)

In the data bound case, we can assign a weight to each systematic
function S (not extra parameters)

2L(S) =
∑

x

σ−2
D (D − S)2, (A6)

so that a very similar expression to equation (A2) can be written
for the joint log-likelihood of the cosmological parameters and the
systematic

2L(θ , S) =
∑

x

σ−2
C (C − T − S)2 +

∑
x

σ−2
D (D − S)2. (A7)

We have not necessarily parametrized S with any parameters we
wish to measure, S can simply be a function that has been arbitrar-
ily drawn through the systematic data. However, if the systematic
is parametrized (as we do in the functional form-filling approach
using complete basis sets) then the signal data C are not used to
determine the values of the extra parameters – the number of de-
grees of freedom in the fit has been reduced with respect to the
marginalizing case. The systematic data D (or a hard boundary)
is used to determine the probability of the systematic. Hence, the
Fisher matrix can be written, in this case, like

F �� =
(

F θθ 0

0 0

)
C

+
(

0 0

0 F aa

)
D

=
(

F θθ 0

0 F aa
D

)
. (A8)

The inverse of the upper-left segment is now simply (F θθ )−1 = A−1.
Using the result from Appendix D (for the hard boundary case), a
bias is introduced with a maximum value of

max|bi | = (constant)(A−1)ij

(∑
σ−2

C

∂C

∂θj

)2

= (const)(A−1)ijF
2
j .

(A9)

We have again condensed the notation so that Fj = ∑
σ−2

C
∂C

∂θj
.

Note that F �= B �= E. Hence, the total MSE on cosmological
parameters for the bias case comes from the unaffected marginal
error of the cosmological parameter and the bias

MSEbias = A−1 + bias2 = A−1 + (constant)2(A−1)2F 4. (A10)

A similar expression can be written for the data-bound case (see
Appendix D, equation D13). We have compressed the subscript
notation from equation (A9) in (A10).

These equations show how marginalization and the bias formal-
ism relate in a general sense, and that they are mathematically differ-
ent objects i.e. when finding the maximum bias using the functional
form-filling approach the MSE between marginalization and func-
tional form filling can be different. This difference arises because
the space of functions probed by marginalization is restricted. In
the next section, we will show that if the functional space assessed
is the same then the MSE should be equal.

A1 Information content

If the parametrization, and number of (truncated) parameters, is the
same then the MSE resulting from the bias or marginalizing is the
same. We show this here using a simple illustrative example.

We approximate the nuisance correlation Csys as a first-order
expansion of a set of parameters

Csys(a) = C
sys
0 + a∇̇aC

sys
0 . (A11)

This can be though of as a restricted set of functions or a special
case of Csys. The nuisance parameters a will be correlated with the
cosmological parameters θ and we can form the extended vector
and Fisher matrix as shown in equation (A3); as in equation (A4),
we can write the marginalized covariance matrix of θ like

〈θθ t 〉c = [F��]−1
θθ

= F −1
θθ + F −1

θθ Fθa(Faa − F t
θaF

−1
θθ Fθa)−1FθaF

−1
θθ , (A12)

and there is no bias of the measured parameters. The subscript ‘c’
on the covariance indicates that we are including the covariance
between θ and a.

If instead we do not account for the covariance between θ and a
in the data, the measured error in the parameters is

〈θθ t 〉 = [Fθθ ]−1, (A13)

but we have induced a bias in the measurement of θ ,

�θ = −F −1
θθ

∑
σ−2

D

∂Csignal

∂θ
Csys(a), (A14)

where σ 2
D is the variance of the data. Using our linear expansion of

Csys(a), we find

�θ = −F −1
θθ Fθa a. (A15)

From this, can see the bias effect explicitly comes through the corre-
lation of the nuisance parameters with the cosmological parameters,
via F θa.

We can simplify things further by considering a single parameter
θ and a single nuisance parameter a. The conditional error on the
parameter can be simplified to

〈θθ〉c = 〈θθ〉(1 − r2)−1, (A16)

where we have introduced the correlation coefficient defined as

r2 = F −1
θθ F 2

θaF
−1
aa . (A17)

We can see this by looking at the inverse of the 2 × 2 matrix F ��,

F −1
�� = 1

FθθFaa − F 2
θa

(
Faa −Fθa

−Faθ FθθFaa

)
. (A18)

The marginalized error on θ is

〈θθ〉c = Faa

FθθFaa − F 2
θa

= 〈θθ〉(1 − r2)−1. (A19)

Similarly, the marginalized error on a is given by

〈aa〉c = 〈aa〉(1 − r2)−1. (A20)

Note that the marginalized errors on θ and a go to infinity when the
correlation coefficient is unity, r = 1. This is because θ and a are
completely degenerate.

From the definition of the correlation coefficient, we can write
the covariance between θ and a as

〈θa〉2
c = 〈θθ〉c〈aa〉cr

2, (A21)

which agrees with the definition of r given in equation (A17).
Note that the results for 〈θθ〉c, 〈aa〉c and 〈θa〉2

c are not just the
errors and covariance when we marginalize. They are also the errors
and covariances when the parameter θ is correlated with a. The only
way to get back the uncorrelated errors is if θ and a are uncorrelated,
so r = 0, or if we know a from some other measurement, in which

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 399, 2107–2128



Form-filling functions 2123

case they effectively decorrelate. Even if we assume some value, or
range of values, for a, there is still a correlation between possible
values of a and θ .

Now, consider the bias on θ , �θ , when we ignore the nuisance
effect (or assume some fixed form) . In our simple model, the bias
can be written as

�θ = 〈θθ〉1/2

〈aa〉1/2
ar = 〈θθ〉1/2

c

〈aa〉1/2
c

ar. (A22)

Now, the error on the bias, including all the correlations between
parameters, is given by

〈�θ�θ〉c =
( 〈θθ〉c

〈aa〉c

)
〈aa〉cr

2 = 〈θθ〉cr
2 = 〈θθ〉 r2

1 − r2
. (A23)

One might have mistakenly thought that the covariance between θ

and a was

〈�θ�θ〉c =
( 〈θθ〉

〈aa〉
)

〈aa〉r2 = 〈θθ〉r2, (A24)

but in doing so we have ignored the real correlation between θ and
a that exists. In the case of fully correlated parameters, when r =
1, the error on �θ is only the uncorrelated error on θ , whereas the
real uncertainty is infinite.

Finally, the correlation between the bias and the cosmological
parameter is

〈θ�θ〉c = 〈θθ〉1/2
c

〈aa〉1/2
c

r〈θa〉c = 〈θθ〉1/2
c

〈aa〉1/2
c

r〈θθ〉1/2
c 〈aa〉1/2

c r = 〈θθ〉cr
2.

(A25)

Now, we want to compare the effect of the bias with marginal-
ization on the error of θ . In the case of marginalization, this is given
by the correlated covariance

〈θθ〉c = 〈θθ〉(1 − r2)−1. (A26)

In the case of bias, we have to add the uncorrelated error, 〈θθ〉,
with the error in the bias value, 〈�θ�θ〉c, which does include the
correlation between cosmological and nuisance parameters, to form
the MSE,

MSE = 〈θθ〉 + 〈�θ�θ〉c

= 〈θθ〉 + 〈θθ〉cr
2 = 〈θθ〉 + 〈θθ〉 r2

(1 − r2)

= 〈θθ〉(1 − r2)−1

= 〈θθ〉c.
(A27)

Hence, the MSE is the same as the marginalized error in this simple
case, and there is no loss or gain of information. Our result here is for
a two-parameter case, but is easily extended to multiple parameters.

It is worth thinking about the assumptions that lead to this result.
For instance, we have assumed in our analysis that the nuisance bias
is completely specified by the parameter α.

This shows that if one fully understands the nuisance effect there
is no difference between marginalization and form filling. Given
marginalization can be done quickly, and in some cases analytically,
we would advocate marginalization in this case.

However, if the form of the nuisance function is not known,
or is wrong, marginalization will tend to underestimate the
true systematic error because of the limited functional space
explored by the set of functions assessed by the truncated
basis set.

Given that in general the number of parameters that can be
marginalized over is limited by the number of data points if the
systematic parametrization is unknown then the marginalizing will
necessarily not be able to assess the impact of some functions.

A2 Constraining nuisance effects with external data

The effect of additional, external data to constrain the nuisance
effects will add an extra Fisher matrix to Faa,

Faa → F ′
aa = Faa + F ex

aa . (A28)

If we define a new parameter

β = [Faa]−1F ex
aa = 〈aa〉

〈aa〉ex
(A29)

as the ratio of the conditional error on a from the original data set
to the expected measured accuracy on a from the external data. If
the error on a from the external data is small, we can expect β to
be large, while of the external error is large β will be small. This
results in the correlation coefficient becoming

r ′2 = r2

1 + β
. (A30)

When the error on the nuisance parameters is highly constrained by
the new data set, β � 1 and the correlation coefficient decreases.
The effect of new data in the nuisance functions is to decorrelate
the nuisance parameter from the data. Propagating this through, we
find

〈aa〉′
c = 〈aa〉

(
1

1 − r2 + β

)
, (A31)

so that the improved accuracy from the external data set feeds
through. The marginalized error on the cosmological parameter is
now

〈θθ〉′
c = 〈θθ〉

(
1 + β

1 − r2 + β

)
. (A32)

The error on the bias is now

〈�θ�θ〉 = 〈θθ〉′
cr

′2 = 〈θθ〉r2

(1 − r2 + β)
. (A33)

Finally, the MSE is

MSE′ = 〈θθ〉′ + 〈�θ�θ〉′
c

= 〈θθ〉 + 〈θθ〉r2

(1 − r2 + β)

= 〈θθ〉
(

1 + β

1 − r2 + β

)
. (A34)

Hence, adding an external data set to constrain a does not change
the conclusions that, if the systematic effect can be modelled by a
known parameterization, the MSE is the same as the marginalized
error on θ .

A3 Summary

We summarize this Appendix by stating the its main conclusions

(i) If the functional form of the systematic is known then the
degradation in the MSE as a result of marginalizing or functional
form filling (bias) is the same.

(ii) If the functional form of the systematic is unknown then the
MSE from marginalizing will tend to underestimate the true sys-
tematic error and is in general not equal to the MSE from functional
form filling.

(iii) Given that the marginalizing necessarily truncates the ba-
sis set there are always some functions that marginalizing cannot
assess.
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APPENDIX B: TESTING FUNCTIONA L
FILLING

In this Appendix, we will present a numerical analysis that will show
that if the order and the number of function evaluations is sufficient
then a bounded area can be exhaustively filled with all possible
functional forms complete to some scale. We want a non-parametric
minimum-assumption approach for determining whether we have
fully sampled the allowed function space.

We can pick a certain scale upon which we can investigate
whether all possible functional forms are evaluated. Having cho-
sen a scale a bounded area can now be pixelated at that scale. In
Fig. B1, we consider a particular pixel and its neighbouring pixels.
There are 22 non-degenerate ways in which a function can pass
through the pixel in question and two surrounding pixels (entering
via one pixel and exiting via another) for example (enter 1, exit 2),
(enter 1, exit 3), (enter 1, exit 4), . . . , (enter 8, exit 6). We call
each combination of entrance and exit a ‘functional dependency’ or
a ‘functional behaviour’. We exclude functions that are multiple-
valued for example (enter 8, exit 7) which would require multiple
values of y(x) for a given x.

Some combinations are more likely than others, for example
consider a box centred on (0, 0). The function y = x will enter
through 1 and exit via 5, corner functions of this type are unlikely
but not impossible, a more robust and fair measure may concatenate
boxes 1 and 2 (and 3 and 4) for example.

We now look at each and every pixel within the bounded region
and for each function drawn perform a check of which entrant and
exit functional dependencies are explored – checking off each func-
tional dependency as it is sampled. We then assign for each pixel the
percentage of functional dependencies that have been experienced
as a result of having drawn the full set of functions. We perform this
test for the hard boundary toy model presented in Section 3.3 for
each of the basis sets considered in Section 4, Chebyshev, Fourier
and top-hat functions. We increase the maximum order N in the
expansion in equation (22) and the number of random realizations
NF of the coefficient space {a0, . . . , aN} (and {b0, . . . , bN} for the
Fourier basis set).

Figs B2–B4 show the toy model hard boundary that has been
pixelated on the scale of �x = 0.5. It can be seen that within the
bounded area every pixel does experience all functional behaviour
if the order and number of functions drawn is sufficiently large. As
expected when the functional order increases, and as the number of
function evaluations increases, the number of pixels that experience

Figure B1. For each pixel defined within a bounded region, we label the
neighbouring pixels. The function shown would assign the functional de-
pendency (enter 2, exit 6) to the central pixel.

Figure B2. For the Chebyshev basis set. For each pixel defined within the
simple bounded region we sum up all functional dependencies experienced
from the full set of functions evaluated.

all functional dependencies increases. We find that a maximum
order of N � 35 with NF � 104 realizations is sufficient for each
point in the bounded area to experience every functional form for
this simple example.

For the top-hat basis set (binning), we find that the maximum
order (number of bins) needs to be much larger than for either
Chebyshev or Fourier basis sets. This can be understood since if
the bin width (order) is larger than the resolution of the pixels
then it is impossible for any given pixel to experience particular
functional dependencies (such as [enter 1, exit 2]). So, even though
top-hat functions can be used for functional form filling there is
some computational expense in this choice.

Fig. B5 shows some diagnostic plots representing the complete-
ness of the functional space sampled. We show the per cent of
pixels that have 100 per cent of the possible functional behaviours
sampled, and the percentage of functional behaviours sampled by
the average pixel. In the top panels, we vary the scale that is in-
vestigated, and it can be seen that for the Chebyshev and Fourier
basis sets ∼100 per cent of pixels have experienced every func-
tional behaviour down to a scale of �x ≈ 0.5. The top-hat basis
set performs much worse with a mean filling of ∼10 per cent,
and only ∼50 per cent of all pixels experiencing every possible
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Figure B3. For the Fourier basis set. For each pixel defined within the
simple bounded region, we sum up all functional dependencies experienced
from the full set of functions evaluated.

behaviour. The general trend is that as the scale drops below the
average oscillation length of the most highly varying functions the
percentage of ‘good’ pixels (experiencing all functional behaviour)
sharply declines. The top-hat basis set fails at �x ∼ 0.3 since, with
N = 35 this is approximately the ‘bin width’ of the functions. In
a cosmological application, one would ensure that the form filling
was complete down to the scale upon which a particular parameter
affects the signal.

In the middle panels of Fig. B5, we vary the maximum order
of the basis set expansion whilst keeping both the scale and the
number of random realizations fixed. It can again be seen that for a
maximum order �35 the Chebyshev and Fourier basis sets achieve
100 per cent functional filling. Again, the top-hat basis set (binning)
fails to achieve any complete functional filling, and only begins to
fill in some pixels when the number of bins becomes more than the
number of pixels.

The lower panel of Fig. B5 shows how the filling efficiency
varies with the number of random realizations of the basis set. For
the simple example given the Chebyshev and Fourier basis sets
completely fill the bounded area down to the scale of �x = 0.5
in ∼103 realizations whereas the top-hat basis set requires many
orders of magnitude more realizations.

Figure B4. For the top-hat basis set. For each pixel defined within the simple
bounded region, we sum up all functional dependencies experienced from
the full set of functions evaluated. For the top-hat basis, order corresponds
to ‘number of bins’.

One could imagine further metrics that could be used to gauge
the completeness of the functional space that has been sampled; in
this first exposition of the methodology, we have shown a simple
way to gauge this effect.

One concern is that this metric may favour the top-hat basis since
we are using a pixelated measure of scale. However, we find that
even with this advantage the top-hat basis set achieves complete
filling only at the expense of a prohibitive amount of computational
time compared to the Chebyshev and Fourier basis sets, as the order
and the number of realizations would need to be much larger to
compensate for the pathological choice of basis functions.

We note that a step-function (e.g. function f over the interval x ∈
[0, 1]which is equal to +1 for 0 < x < 0.5 and −1 for 0.5 < x < 1)
may be better approximated by a low-order top-hat function and may
take a very high order Chebyshev or Fourier expansion. The feature
highlighted here – a step function – has a feature (the step) which
has a very small scale variation. In fact, the scale of a step is actually
zero. The issue of whether functional form filling is complete down
to some scale is shown in Fig. B5, and as the maximum order is
increased and more highly oscillatory functions are included the
minimum complete scale will decrease. This example highlights
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Figure B5. The right-hand panels show the percentage of pixels in the
bounded area that have experienced every type of functional behaviour
(100 per cent filling). The left-hand hand panels show the percentage of all
functional behaviours experienced per pixel on average. The upper panels
show these diagnostic measures of functional form filling as a function
of scale, with the order and number of realizations fixed at N = 35 and
NF = 103, respectively. The middle panels as a function of maximum
order, with the scale and number of realizations fixed at �x = 0.5 and
NF = 103, respectively, and the lower panels as a function of number of
random realizations, with the scale and order fixed at �x = 0.5 and N = 35
respectively. In all panels, blue (darkest grey, lower lines) is for the top-hat
(binning) basis set, red (lighter grey) for the Chebyshev basis set and green
(lightest grey) for the Fourier basis set.

that fact that the top-hat basis set can probe these very small scales
to some degree whilst missing larger scale features, this can be seen
in Fig. B4.

For all the calculations in Section 4, we pessimistically use a
maximum order of N = 35 and use NF = 104 realizations for all
basis sets.

APPENDIX C : C OMPUTATIONA L TIME

One may be concerned at the amount of computational time that
the functional form filling we are advocating may take. This is a
valid concern since many realizations of the systematic data could
be required and one must reperform the cosmological parameter
fitting for each and every possible function in order to evaluate the
potential bias.

If, for a simple grid search in parameter space, the time taken to
analyse a single point in parameter space is τ then for N cosmo-
logical parameters the total time-scales as T ∝ ANτ where A is the
number of evaluations per parameter. Even for one parameter A �
1 to correctly map out a likelihood surface. If one marginalizes over

M extra systematic parameters then the total time must increase
to T marg ∝ A(N+M) τ . For the functional form-filling case, the to-
tal time taken for the calculation is simply the number of different
function evaluations F multiplied by the number of data realizations
D and the time to estimate the cosmological parameters is T fff ∝
FDANτ . The ratio in the computation time can now be written as
T marg/T fff ≈ AM/FD.

Let us pessimistically assume that approximately F = 104 func-
tion evaluations are needed and D = 103 data realizations, and
conservatively assume that M = 10 extra systematic parameters are
required to ensure a systematic effect is correctly determined. For
A � 100, we find T marg � 109T fff . So, on the contrary to such a
technique being computationally expensive, treating systematics in
such a fashion may in fact be much more efficient than marginaliz-
ing over many nuisance parameters using a traditional grid search.

For some Monte Carlo parameter searches, the computational
time can be reduced to T = NAτ . In this case, we find that
T marg/T fff ≈ M/NFD + 1/FD. The computation time is now
longer for functional form-filling T marg/T fff � 1. This highlights
the paramount importance of finding efficient form-filling func-
tions such as Chebyshev polynomials, we investigate the efficiency
of Chebyshev, Fourier and top-hat basis sets in Appendix B.

We take random realizations of the coefficient space to uniformly
sample the coefficients’ possible values. This is a first, brute-force
attempt at the problem. Alternative approaches could explore a set
grid of values in this space, or use a more sophisticated random
search such as a Monte Carlo chain approach – we leave this for
future work.

In this first investigation, we have taken a simplistic approach
and, as shown in Appendix B, we have found that a set of simple
uniform random realizations is sufficient to explore the full space
of functions.

Bayesian versus frequentist. One may be concerned that what we
are advocating is a frequenist solution to the systematic problem.
On contrary what we suggest is explicitly Bayesian: the method
can take into account any prior information on the systematic from
either theory or data. The specific method used in this article to find
the form-filling functions is analogous to a brute-force parameter in
maximum-likelihood reconstruction.

APPENDI X D : EXTREMAL O F THE BI AS

Here, we will show that given a hard boundary or some data there
exists a maximum absolute bias. Within the Fisher matrix formal-
ism, the bias caused by a function can be written (equation 12)
as

b(θi) = (F −1)ij
∑

s−2
C Csys ∂Csignal

∂θj

(D1)

where sC is the observed signal variance. We can rewrite this as

bμ = (F −1)μνC
sys
α s−2

α Dα,ν, (D2)

where Dα,ν ≡ ∂C
signal
α

∂θν
; we compress this to

bμ = Csys
α Qα,μ, (D3)

where Qα,μ = (F −1)μνs
−2
α Dα,ν .

We have the additional constraint that we are considering the set
of systematic functions {S} that give the same weight∑

α

σ−2
α

(
Csys

α − dα

)2 = A2 = constant (D4)

with respect to some data vector dα . In this proof and throughout the
article, we assume that there is at least some systematic information
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at every data value in the signal. If there was no constraint at the
position of some of the signal data values then the bias would be
unbounded.

For the hard boundary there is a constraint that [Csys(x)]2 ≤ A2

at all x – this is actually for a constant (flat) hard boundary for a
variable boundary the A → A(x).

So, to find the maximum bias we need to solve the following
equation

∂

∂C
sys
γ

{
Csys

α Qα,μ − λ

(∑
α

σ−2
α

(
Csys

α − dα

)2 − A2

)}
= 0, (D5)

where λ is a Langrange multiplier. Solving this for fixed μ and all
γ , we find that

Csys
γ = 1

2λ
σ 2

γ Qγ,μ + dγ . (D6)

To determine the value of the Lagrange multiplier, we substitute this
back into the constraint equation (D4) to get a quadratic in (1/2λ)(

1

2λ

)2
(∑

α

(
σ 2

αQα,μ

)2

)
+

(
1

2λ

) (∑
α

(2σ 2
αQα,μdα)

)

+
(∑

α

d2
α − A2

)
= 0. (D7)

This has solutions of the form(
1

2λ

)
= Rμ ± Tμ, (D8)

where

Rμ = −
(∑

α 2σ 2
α Qα,μdα

)
2

∑
α

(
σ 2

αQα,μ

)2

Tμ =

√(∑
α σ 2

αQα,μdα

)2 − 4
[∑

α

(
σ 2

αQα,μ

)2 (∑
α d2

α − A2
)]

2
∑

α

(
σ 2

αQα,μ

)2 .

(D9)

So, the function(s) with the maximum bias can be expressed as

Csys
γ = (Rμ ± Tμ)σ 2

γ Qγ,μ + dγ . (D10)

Note that there exists two functions that represent the maximum
and minimum biases, which are given by

max/min(bμ) = [
Rμσ 2

αQα,μ + dα

]
Qα,μ ± [

Tμσ 2
αQα,μ

]
Qα,μ.

(D11)

So, for a set of systematic functions that give the same weight with
respect to some data there should exists a maximum and a minimum
bias. Equation (D4) can be understood by looking at Fig. 7. For
the data boundary case, there will be some large and small biases –
actually every bias is ‘allowed’ but has some probability with respect
to the data. Equation (D4) effectively takes a horizontal cut across
on of the scatter plot panels in Fig. 7 at a given weight so that
equation (D11) gives the minimum and maximum biases for that
weight.

If the mean of the data is zero 〈dα〉 = 0 and the variance of the
data is 〈d2

α〉 = σ 2
d then 〈Rμ〉 = 0 and

〈Tμ〉 =
√

A2 − σ 2
d[∑

α

(
σ 2

αQα,μ

)2
] 1

2

, (D12)

so that the mean bias is zero and the bias contours (contours are
drawn for a constant weights, A) can be written as

〈bμ〉 = ±〈Tμ〉σ 2
αQ2

α,μ. (D13)

For a hard boundary, we have

Rμ = 0

Tμ = A[∑
α(Qα,μ)2

] 1
2

= A′ (D14)

which gives solutions for the maximum bias

max/min(bμ) = ±A′Q2
α,μ, (D15)

this calculation can be compared to equations (D12) and (D13).
This confirms that in the hard boundary case the absolute value of
the bias has a maximum and that there exists two mirrored functions
[f (x) and − f (x)] which both yield this maximum absolute bias.

In the case when the systematic is constrained by some data
points Csysα , we can easily construct a function that goes through
all the systematic data points but has unbounded ‘bad effects’ at
some other point. However such a function, that has the same fit
to the data but some other behaviour between the points is also
assessed in terms of its impact on the cosmological parameter in
question. Looking at Fig. 7 such a function would have the same
weight but would have a smaller bias than a ‘good function’ that
went through the same data points because the a0 behaviour is not
strongly degenerate with some ‘bad behaviour’ but has a simple
functional dependency.

The key conclusion of this Appendix is that out of the space of all
functions that have the same weight with respect to the data there
exists a maximum and a minimum bias that this space of functions
can cause.

APPENDI X E: DATA W EI GHTI NG

We know that given some error bars on data, and a different realiza-
tion of the experiment, that the actual data points would be scattered
differently but the statistical spread of the data would be the same. If
a line fits exactly through some data points it is given a likelihood of
exactly 1 but we know that this probability is spurious since given
another realization of the experiment the data would be differently
scattered and a new function would be assigned a probability of 1.
This is a problem because P = 1 should be unique. This problem
occurs because in the original step the probability of the data has
not been taken into account.

For the specific Gaussian case, only we have used the marginal-
ization over the probability of the data can be done analytically.
We stress here that in general the systematic mean will be non-zero
and that only in this very simplified Gaussian case (and some other
analytic examples) can this procedure can be done analytically.

Here, we will outline how this ‘sample variance effect’ – that of
taking into account the likelihood of the systematic data – can be
incorporated into the χ 2-weighting scheme given in equation (26).

We can write the probability of a function f [a] as the sum over
the data vector di multiplied by some prior probability of the data
values p(di)

p(f [a]) =
∏

i

p(fi |di)p(di), (E1)

where fi = f (xi, a) are the function values are the variable positions
xi at which the data has been taken.

We now want to marginalize over the probability of each data
point to obtain p(f [a])

p(f [a]) =
∫

p(f [a]|D)dD

=
∏

i

∫
p(fi |di)p(di)ddi . (E2)
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Since we assume Gaussian data throughout the probability of the
data can be written as a Gaussian centred about zero and p(di|fi)
can be replaced with a χ 2 distribution such that

p(f [a]) ∝
∏

i

∫ +∞

−∞
e
− (di−fi )2

2σ2
i e

− d2
i

2σ2
D ddi, (E3)

where σ i is the error on the ith data point and σ D is the variance of
data which we take to be σ D = σ i. Note that each data point could
have a different error bar – we have made the assumption that the
data at each point is Gaussian distributed not that all data points are
the same (the integral is over di not over i). Evaluating the integral
in equation (E3), we have (now using log-likelihood for clarity)

ln[p(f [a])] ∝ −
∑

i

(
f 2

i

4σ 2
i

)
+

∑
i

ln(σi

√
π). (E4)

So that in the case of Gaussian-distributed data the probability of
each function (and hence the probability of the bias incurred by that
function) can be simply evaluated using equation (E4). Note that a
Gaussian with a mean of zero is uniquely defined by its variance

hence the data values themselves do not appear in the weighting
formula given.

APPENDI X F: I C O S M O MODULE D ESCRI PTIO N

The ‘worst bias’ calculations presented in Section 5 were done
using an extension to the open source interactive cosmology cal-
culator ICOSMO (Refregier et al. 2008b; Kitching et al. 2008d;
http://www.icosmo.org). This additional module will be included
in v1.2 and later.

The tomographic lensing module MK BIAS CHEB takes m0 and β

defined in equation (37) and uses the functional form-filling tech-
nique (using the Chebyshev basis set) to calculate the maximum bias
in each cosmological parameter. The lensing survey and central cos-
mology can be arbitrarily defined using the common SET FIDUCIAL

routine described in Refregier et al. (2008b).

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 399, 2107–2128


