58 research outputs found

    Predicting Forage Provision of Grasslands Across Climate Zones by Hyperspectral Measurements

    Get PDF
    The potential of grasslands’ fodder production is a crucial management measure, while its quantification is still laborious and costly. Remote sensing technologies, such as hyperspectral field measurements, enable fast and non-destructive estimation. However, such methods are still limited in transferability to other locations or climatic conditions. With this study, we aim to predict forage nutritive value, quantity, and energy yield from hyperspectral canopy reflections of grasslands across three climate zones. We took hyperspectral measurements with a field spectrometer from grassland canopies in temperate, tropical and semi-arid grasslands, and analyzed corresponding biomass samples for their quantity (BM), metabolizable energy content (ME) and metabolizable energy yield (MEY). Three machine learning algorithms were used to establish prediction models for single and across climate regions. The normalized root mean squared error (nRMSE) for ME, BM and MEY varied between 0.12 – 0.19, 0.14 – 0.21, and 0.15 – 0.21, respectively. The ME trans-climatic model showed the best accuracy compared to the local models. Trans-climatic model predictions of climate-specific data, decrease in accuracy to 0.16 – 0.21, 0.17 – 0.24, and 0.19 – 0.28 for ME, BM and MEY compared to predictions with climate-specific models. Trans-climatic models with feed-forward neural networks showed similar performance for ME but higher accuracies for BM and MEY predictions. The trans-climatic models generally showed good performance for forage nutritive value and forage provision. Our results suggest that models based on hyperspectral measurements offer great potential to assess or even map the forage nutritive value of grasslands across climate zones

    Will Remote Sensing Shape the Next Generation of Species Distribution Models?

    Get PDF
    Two prominent limitations of species distribution models (SDMs) are spatial biases in existing occurrence data and a lack of spatially explicit predictor variables to fully capture habitat characteristics of species. Can existing and emerging remote sensing technologies meet these challenges and improve future SDMs? We believe so. Novel products derived from multispectral and hyperspectral sensors, as well as future Light Detection and Ranging (LiDAR) and RADAR missions, may play a key role in improving model performance. In this perspective piece, we demonstrate how modern sensors onboard satellites, planes and unmanned aerial vehicles are revolutionizing the way we can detect and monitor both plant and animal species in terrestrial and aquatic ecosystems as well as allowing the emergence of novel predictor variables appropriate for species distribution modeling. We hope this interdisciplinary perspective will motivate ecologists, remote sensing experts and modelers to work together for developing a more refined SDM framework in the near future

    GATE : a simulation toolkit for PET and SPECT

    Get PDF
    Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols, and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at the address http://www-lphe.epfl.ch/GATE/

    Current measures of metabolic heterogeneity within cervical cancer do not predict disease outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A previous study evaluated the intra-tumoral heterogeneity observed in the uptake of F-18 fluorodeoxyglucose (FDG) in pre-treatment positron emission tomography (PET) scans of cancers of the uterine cervix as an indicator of disease outcome. This was done via a novel statistic which ostensibly measured the spatial variations in intra-tumoral metabolic activity. In this work, we argue that statistic is intrinsically <it>non</it>-spatial, and that the apparent delineation between unsuccessfully- and successfully-treated patient groups via that statistic is spurious.</p> <p>Methods</p> <p>We first offer a straightforward mathematical demonstration of our argument. Next, we recapitulate an assiduous re-analysis of the originally published data which was derived from FDG-PET imagery. Finally, we present the results of a principal component analysis of FDG-PET images similar to those previously analyzed.</p> <p>Results</p> <p>We find that the previously published measure of intra-tumoral heterogeneity is intrinsically non-spatial, and actually is only a surrogate for tumor volume. We also find that an optimized linear combination of more canonical heterogeneity quantifiers does not predict disease outcome.</p> <p>Conclusions</p> <p>Current measures of intra-tumoral metabolic activity are not predictive of disease outcome as has been claimed previously. The implications of this finding are: clinical categorization of patients based upon these statistics is invalid; more sophisticated, and perhaps innately-geometric, quantifications of metabolic activity are required for predicting disease outcome.</p

    Quantitative Modeling of Cerenkov Light Production Efficiency from Medical Radionuclides

    Get PDF
    There has been recent and growing interest in applying Cerenkov radiation (CR) for biological applications. Knowledge of the production efficiency and other characteristics of the CR produced by various radionuclides would help in accessing the feasibility of proposed applications and guide the choice of radionuclides. To generate this information we developed models of CR production efficiency based on the Frank-Tamm equation and models of CR distribution based on Monte-Carlo simulations of photon and ÎČ particle transport. All models were validated against direct measurements using multiple radionuclides and then applied to a number of radionuclides commonly used in biomedical applications. We show that two radionuclides, Ac-225 and In-111, which have been reported to produce CR in water, do not in fact produce CR directly. We also propose a simple means of using this information to calibrate high sensitivity luminescence imaging systems and show evidence suggesting that this calibration may be more accurate than methods in routine current use

    The impact of a chief planning officer on the administrative environment for planning

    Full text link
    Institution-wide planning, to be effective, must have the support of key administrators. Presidents, vice-presidents, deans, and directors must feel that sufficient consensus can be reached on explicit goals to make comprehensive planning possible and worthwhile. While much has been written about the importance of CEO leadership in gaining broad support for planning, little has been said about the role of the chief planning officer in this regard. This paper, based on a national survey of administrators' views of planning, studies the relationship between having a chief planning officer and administrators' perceptions of campus planning. Its intended audience includes all those interested in institutional planning.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43608/1/11162_2004_Article_BF00991968.pd

    A Range of Earth Observation Techniques for Assessing Plant Diversity

    Get PDF
    AbstractVegetation diversity and health is multidimensional and only partially understood due to its complexity. So far there is no single monitoring approach that can sufficiently assess and predict vegetation health and resilience. To gain a better understanding of the different remote sensing (RS) approaches that are available, this chapter reviews the range of Earth observation (EO) platforms, sensors, and techniques for assessing vegetation diversity. Platforms include close-range EO platforms, spectral laboratories, plant phenomics facilities, ecotrons, wireless sensor networks (WSNs), towers, air- and spaceborne EO platforms, and unmanned aerial systems (UAS). Sensors include spectrometers, optical imaging systems, Light Detection and Ranging (LiDAR), and radar. Applications and approaches to vegetation diversity modeling and mapping with air- and spaceborne EO data are also presented. The chapter concludes with recommendations for the future direction of monitoring vegetation diversity using RS
    • 

    corecore