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Abstract  
The potential of grasslands’ fodder production is a crucial management measure, while its quantification is 

still laborious and costly. Remote sensing technologies, such as hyperspectral field measurements, enable fast 

and non-destructive estimation. However, such methods are still limited in transferability to other locations or 

climatic conditions. With this study, we aim to predict forage nutritive value, quantity, and energy yield from 

hyperspectral canopy reflections of grasslands across three climate zones. We took hyperspectral 

measurements with a field spectrometer from grassland canopies in temperate, tropical and semi-arid 

grasslands, and analyzed corresponding biomass samples for their quantity (BM), metabolizable energy 

content (ME) and metabolizable energy yield (MEY). Three machine learning algorithms were used to 

establish prediction models for single and across climate regions. The normalized root mean squared error 

(nRMSE) for ME, BM and MEY varied between 0.12 – 0.19, 0.14 – 0.21, and 0.15 – 0.21, respectively. The 

ME trans-climatic model showed the best accuracy compared to the local models. Trans-climatic model 

predictions of climate-specific data, decrease in accuracy to 0.16 – 0.21, 0.17 – 0.24, and 0.19 – 0.28 for ME, 

BM and MEY compared to predictions with climate-specific models. Trans-climatic models with feed-forward 

neural networks showed similar performance for ME but higher accuracies for BM and MEY predictions. The 

trans-climatic models generally showed good performance for forage nutritive value and forage provision. Our 

results suggest that models based on hyperspectral measurements offer great potential to assess or even map 

the forage nutritive value of grasslands across climate zones. 

Introduction 
The world's grassland ecosystems provide a wide range of ecosystem services, with the provision of forage - 

both in terms of nutritive value and quantity - being among the most important. In particular, the potential of 

biomass productivity, metabolizable energy content, and yield are critical for sustainable and profitable 

grassland management. However, this potential is often unknown, and quantifying forage nutritive value and 

quantity remains expensive and time-consuming, typically requiring laboratory analysis of biomass samples. 

This is where remote sensing technologies, such as hyperspectral sensors, are becoming increasingly important 

as they provide rapid and non-destructive measurements (Ferner et al., 2015). Hyperspectral modelling 

approaches have been used to estimate, for example, metabolizable energy content and biomass quantity for 

West African savanna grasslands (Ferner et al., 2018; Ferner et al., 2021), nutritional value for South African 

savanna grasslands (Singh et al., 2017), and temperate ryegrass canopies (Smith et al., 2020). Nevertheless, 

these forage supply predictions have limited applicability to other sites or even climatic conditions. With this 

study, we aim to fill this gap by predicting biomass production (BM), metabolizable energy (ME) content, and 

metabolizable energy yield (MEY) from hyperspectral, remotely sensed canopy reflectance of grassland 

communities in three different climatic zones on the African and European continents. Here we aim to (1) 

investigate the accuracy of hyperspectral-based prediction models for ME, BM and MEY for a temperate, 

tropical and semi-arid climate, and a combined trans-climatic model, (2) test different machine learning 

algorithms (partial least squares, random forest and neural networks), and (3) validate the trans-climatic models 

against the three local models using the same validation dataset to investigate the transferability of a trans-

climatic model for ME, BM, and MEY.  

Methods 
Our study sites included grasslands in temperate, subtropical, and tropical climates. Sites were located in (a) 

subtropical to tropical grasslands in the Sudanese savannas of West Africa (Ferner et al., 2015; Guuroh et al., 
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2018), (b) subtropical grasslands in the semi-arid thornbush savannas of Namibia, and (c) temperate central 

European meadows and pastures within the three Biodiversity Exploratory sites in northeastern, central, and 

southwestern Germany (Fischer et al., 2010). We made 456 hyperspectral measurements using full-range field 

spectrometers (177 from Germany, 105 from West Africa, and 174 from Namibia). Samples of aboveground 

biomass were collected from all measured plots at the time of spectrometer measurements by cutting the 

herbaceous vegetation of a 60 x 60 cm quare at stubble height (3 cm). The amount of dry matter per m² (BM) 

was determined by weighing after 48 hours of oven drying at 55°C. The dried samples were also analyzed for 

metabolizable energy (ME) content as a proxy for forage nutritive value using the procedure of Menke and 

Steingass (1988). From the values of BM and ME, the amount of metabolizable energy per m² was calculated 

as the so-called metabolizable energy yield (MEY). The spectral signatures of the hyperspectral measurements 

were smoothened and corrected for atmospheric dynamic artefacts. For each spectrum, we took the raw spectra 

and determined the first derivative, various vegetation indices (VIs), and absorption features from the entire 

spectrum as potential predictors of the ME, BM, and MEY forage provision measures. Partial least squares 

(PLS), random forest (RF) and a feed-forward neural network (NN) were used to build predictive models for 

each climatic zone (climate-specific), and for the three zones combined (trans-climatic) with a repeated k-fold 

cross-validation. Repeated backward selection according to the importance of the predictors was used to reduce 

the dimension of the 644 predictors with RF, while PLS reduced the dimension of the predictors by creating 

latent vectors from the entire predictor set and the NN used the entire set. We also split the local datasets into 

a training and a validation dataset at 80% and 20%, respectively, to calibrate and validate the trans-climatic 

models against the local models by using the same validation datasets for both the local and trans-climatic 

models. The different model accuracies were assessed and compared by calculating the normalized root mean 

square error (nRMSE) of the validation datasets.  

Results and Discussion 
Random Forest and Partial Least Squares Regression 

Interestingly, the trans-climatic models achieved generally similar or better accuracies (nRMSE ~0.12) than 

the climate-specific models for ME, BM, and MEY, which could be due to greater variation in the calibration 

data (Fig. 1).  

 

Fig. 1: Predicted vs observed metabolizable energy (ME), biomass (BM) and metabolizable energy yield (MEY) for climate-specific 

(temperate, tropical and semi-arid) and trans-climatic models partial least squares (PLS) and random forest (RF) regressions. Model 

accuracies are given by the coefficient of determination (R²), root mean squares error (RMSE), normalized RMSE (nRMSE), and the 

ratio of performance to deviation (RPD). 
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The first derivative of the canopy reflectance signature proved to be the most appropriate predictor for ME and 

BM prediction, while MEY was best predicted by a combination of the first derivative, absorption features, 

and vegetation indices. We did not find a clear advantage of PLS or RF, as both strategies lead to similar 

accuracies with minor differences. In general, we found a slight underestimation of high ME, BM, and MEY 

values, which could be an indication of overfitting (ME) or saturation of the models due to a closed canopy 

(BM). This saturation effect at a given vegetation density is well-known and remains a limitation of optical 

sensors (Wachendorf et al., 2018). Predicting standing biomass from hyperspectral canopy measurements 

proved difficult, as models appear to saturate at about 200 g m-² for temperate, tropical, and transclimate 

models. This may be explained by the effect of nearly closed canopies in temperate and tropical grasslands at 

about 200 g dry mass per m², which is not the case for the more sparse vegetation in semi-arid savannas. 

Comparing the trans-climatic models to the local models by predicting the same data with both models, the 

accuracy of the trans-climatic models is slightly lower than that of the local models with an nRMSE of 0.16-

0.21 compared to 0.12-0.19 for ME, 0.17-0.24 compared to 0.14-0.21 for BM, and 0.19-0.28 compared to 

0.16-0.21 for MEY. Consequently, using the trans-climatic models to predict data from only one climate is 

still possible with reasonable, but somewhat lower, accuracy.  

Neural Networks 

Initially, NN models for the trans-climatic data showed similar accuracies for the ME, BM, and MEY 

predictions, with an nRMSE of 0.13 (Fig. 2). However, we also found a slight underestimation of higher BM 

and MEY values, which can be explained by model saturation due to a closed canopy at higher grassland 

vegetation biomass levels as described above. 

 

Fig. 2: Predicted vs observed metabolizable energy (ME, n = 318), biomass (BM, n = 456) and metabolizable energy yield (MEY, n = 

316) prediction models for trans-climatic datasets using feed-forward neural networks (NN). Model accuracies are given by the 

coefficient of determination (R²), root mean squares error (RMSE), normalized RMSE (nRMSE), and the ratio of performance to 

deviation (RPD). 

The nRMSE of the local models for temperate, tropical and semi-arid areas varied between 0.18 and 0.22 for 

ME, 0.14 and 0.15 for BM, and 0.17 and 0.18 for MEY predictions. Similar to the RF and PLS models, the 

trans-climatic prediction is more accurate than the local models, which can be an effect of both broader 

variation, or a larger number of training observations, as neural networks are known to require more data than 

RF or PLS models do. The trans-climatic NN models, however, show overall better accuracy (nRMSE = 0.13) 

than the trans-climatic RF or PLS models (0.12 < nRMSE < 0.19). 

Conclusions and Implications 
Hyperspectral forage supply models performed well in both local and trans-climatic applications in temperate, 

tropical, and semiarid climates. Limitations can occur with saturation effects due to closed grassland canopies, 

especially for temperate or tropical grassland vegetation. As the size and variation of the calibration dataset 

increase, the models – especially deep-learning strategies – may even improve or be transferable to other parts 

of the world. Hyperspectral models thus offer great potential for agricultural or ecological applications to 

assess or even map forage nutritive value and quantity of grasslands worldwide, also in light of the recently 

launched EnMAP satellite. This will contribute to better-informed management of grasslands and rangelands 

and maintain or improve their agricultural and ecological value. 
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