974 research outputs found
The physics of twisted magnetic tubes rising in a stratified medium: two dimensional results
The physics of a twisted magnetic flux tube rising in a stratified medium is
studied using a numerical MHD code. The problem considered is fully
compressible (no Boussinesq approximation), includes ohmic resistivity, and is
two dimensional, i.e., there is no variation of the variables in the direction
of the tube axis. We study a high plasma beta case with small ratio of radius
to external pressure scaleheight. The results obtained can therefore be of
relevance to understand the transport of magnetic flux across the solar
convection zone.Comment: To be published in ApJ, Vol. 492, Jan 10th, 1998; 25 pages, 16
figures. NEW VERSION: THE PREVIOUS ONE DIDN'T PRINT CORRECTLY. The style file
overrulehere.sty is include
Transport of toroidal magnetic field by the meridional flow at the base of the solar convection zone
In this paper we discuss the transport of toroidal magnetic field by a weak
meridional flow at the base of the convection zone. We utilize the differential
rotation and meridional flow model developed by Rempel and incorporate feedback
of a purely toroidal magnetic field in two ways: directly through the Lorentz
force (magnetic tension) and indirectly through quenching of the turbulent
viscosity, which affects the parametrized turbulent angular momentum transport
in the model. In the case of direct Lorentz force feedback we find that a
meridional flow with an amplitude of around 2 m/s can transport a magnetic
field with a strength of 20 to 30 kG. Quenching of turbulent viscosity leads to
deflection of the meridional flow from the magnetized region and a significant
reduction of the transport velocity if the magnetic field is above
equipartition strength.Comment: 8 pages, 6 figure
Twisted flux tube emergence from the convection zone to the corona
3D numerical simulations of a horizontal magnetic flux tube emergence with
different twist are carried out in a computational domain spanning the upper
layers of the convection zone to the lower corona. We use the Oslo Staggered
Code to solve the full MHD equations with non-grey and non-LTE radiative
transfer and thermal conduction along the magnetic field lines. The emergence
of the magnetic flux tube input at the bottom boundary into a weakly magnetized
atmosphere is presented. The photospheric and chromospheric response is
described with magnetograms, synthetic images and velocity field distributions.
The emergence of a magnetic flux tube into such an atmosphere results in varied
atmospheric responses. In the photosphere the granular size increases when the
flux tube approaches from below. In the convective overshoot region some 200km
above the photosphere adiabatic expansion produces cooling, darker regions with
the structure of granulation cells. We also find collapsed granulation in the
boundaries of the rising flux tube. Once the flux tube has crossed the
photosphere, bright points related with concentrated magnetic field, vorticity,
high vertical velocities and heating by compressed material are found at
heights up to 500km above the photosphere. At greater heights in the magnetized
chromosphere, the rising flux tube produces a cool, magnetized bubble that
tends to expel the usual chromospheric oscillations. In addition the rising
flux tube dramatically increases the chromospheric scale height, pushing the
transition region and corona aside such that the chromosphere extends up to 6Mm
above the photosphere. The emergence of magnetic flux tubes through the
photosphere to the lower corona is a relatively slow process, taking of order 1
hour.Comment: 53 pages,79 figures, Submitted to Ap
The Three-dimensional Evolution of Rising, Twisted Magnetic Flux Tubes in a Gravitationally Stratified Model Convection Zone
We present three-dimensional numerical simulations of the rise and
fragmentation of twisted, initially horizontal magnetic flux tubes which evolve
into emerging Omega-loops. The flux tubes rise buoyantly through an
adiabatically stratified plasma that represents the solar convection zone. The
MHD equations are solved in the anelastic approximation, and the results are
compared with studies of flux tube fragmentation in two dimensions. We find
that if the initial amount of field line twist is below a critical value, the
degree of fragmentation at the apex of a rising Omega-loop depends on its
three-dimensional geometry: the greater the apex curvature of a given
Omega-loop, the lesser the degree of fragmentation of the loop as it approaches
the photosphere. Thus, the amount of initial twist necessary for the loop to
retain its cohesion can be reduced substantially from the two-dimensional
limit. The simulations also suggest that as a fragmented flux tube emerges
through a relatively quiet portion of the solar disk, extended crescent-shaped
magnetic features of opposite polarity should form and steadily recede from one
another. These features eventually coalesce after the fragmented portion of the
Omega-loop emerges through the photosphere.Comment: 17 pages, 17 figures, uses AAS LaTeX macros v5.0. ApJ, in pres
HARD PHOTON PRODUCTION IN NUCLEUS-NUCLEUS COLLISIONS AT 30 MeV/u AND 44 MeV/u
Doubly differential cross-sections for Bremsstrahlung production have been measured in the reactions 40Ar + 197Au at 30 MeV/u and 86Kr +12C, AgNat and 197Au at 44 MeV/u. A qualitative analysis of the characteristics of the γ-ray emission suggests strongly that the initial proton-neutron collisions are the main source of nuclear Bremsstrahlung
Can Extra Mixing in RGB and AGB Stars Be Attributed to Magnetic Mechanisms?
It is known that there must be some weak form of transport (called cool
bottom processing, or CBP) acting in low mass RGB and AGB stars, adding nuclei,
newly produced near the hydrogen-burning shell, to the convective envelope. We
assume that this extra-mixing originates in a stellar dynamo operated by the
differential rotation below the envelope, maintaining toroidal magnetic fields
near the hydrogen-burning shell. We use a phenomenological approach to the
buoyancy of magnetic flux tubes, assuming that they induce matter circulation
as needed by CBP models. This establishes requirements on the fields necessary
to transport material from zones where some nuclear burning takes place,
through the radiative layer, and into the convective envelope. Magnetic field
strengths are determined by the transport rates needed by CBP for the model
stellar structure of a star of initially 1.5 solar mass, in both the AGB and
RGB phases. The field required for the AGB star in the processing zone is B_0 ~
5x10^6 G; at the base of the convective envelope this yields an intensity B_E <
10^4 G (approximately). For the RGB case, B_0 ~ 5x10^4 to 4x10^5 G, and the
corresponding B_E are ~ 450 to 3500 G. These results are consistent with
existing observations on AGB stars. They also hint at the basis for high field
sources in some planetary nebulae and the very large fields found in some white
dwarfs. It is concluded that transport by magnetic buoyancy should be
considered as a possible mechanism for extra mixing through the radiative zone,
as is required by both stellar observations and the extensive isotopic data on
circumstellar condensates found in meteorites.Comment: 26 pages, 4 figures, accepted by Astrophysical Journa
Application of realistic effective interactions to the structure of the Zr isotopes
We calculate the low-lying spectra of the zirconium isotopes Z=40 with
neutron numbers from N=52 to N=60 using the 1p1/20g9/2 proton and
2s1d0g7/20h11/2 neutron sub-shells to define the model space. Effective
proton-proton, neutron--neutron and proton-neutron interactions have been
derived using 88Sr as closed core and employing perturbative many-body
techniques. The starting point is the nucleon-nucleon potential derived from
modern meson exchange models. The comprehensive shell-model calculation
performed in this work provides a qualitative reproduction of essential
properties such as the sub-shell closures in 96Zr and 98Zr.Comment: To appear in Phys Rev C, june 2000, 8 figs, Revtex latex styl
Writhe in the Stretch-Twist-Fold Dynamo
This is an Author's Original Manuscript of an article whose final and definitive form, the Version of Record, has been published in Geophysical and Astrophysical Fluid Dynamics (2008) Copyright © 2008 Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/03091920802531791This article looks at the influence of writhe in the stretch-twist-fold dynamo. We consider a thin flux tube distorted by simple stretch, twist, and fold motions and calculate the helicity and energy spectra. The writhe number assists in the calculations, as it tells us how much the internal twist changes as the tube is distorted. In addition it provides a valuable diagnostic for the degree of distortion. Non mirror-symmetric dynamos typically generate magnetic helicity of one sign on large-scales and the opposite sign on small scales. The calculations presented here confirm the hypothesis that the large-scale helicity corresponds to writhe and the small scale corresponds to twist. In addition, the writhe helicity spectrum exhibits an interesting oscillatory behavior. The technique of calculating Fourier spectra for the writhe helicity may be useful in other areas of research, for example, the study of highly coiled molecules
Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT
Studying the temporal variability of BL Lac objects at the highest energies
provides unique insights into the extreme physical processes occurring in
relativistic jets and in the vicinity of super-massive black holes. To this
end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in
the high (HE, 100 MeV 200 GeV)
gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE
light curve in the quiescent state is consistent with a log-normal behavior.
The VHE variability in this state is well described by flicker noise
(power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales
larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives
consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10
days) compatible with the VHE findings. The HE and VHE power spectral densities
show a scale invariance across the probed time ranges. A direct linear
correlation between the VHE and HE fluxes could neither be excluded nor firmly
established. These long-term-variability properties are discussed and compared
to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during
VHE-flaring states. The difference in power spectral noise behavior at VHE
energies during quiescent and flaring states provides evidence that these
states are influenced by different physical processes, while the compatibility
of the HE and VHE long-term results is suggestive of a common physical link as
it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure
Starspots on the fastest rotators in the Beta Pic moving group
Aims: We carried out high-resolution spectroscopy and BV(I)_C photometric
monitoring of the two fastest late-type rotators in the nearby Beta Pictoris
moving group, HD199143 (F7V) and CD-641208 (K7V). The motivation for this work
is to investigate the rotation periods and photospheric spot patterns of these
very young stars, with a longer term view to probing the evolution of rotation
and magnetic activity during the early phases of main-sequence evolution. We
also aim to derive information on key physical parameters, such as rotational
velocity and rotation period. Methods: We applied maximum entropy (ME) and
Tikhonov regularizing (TR) criteria to derive the surface spot map
distributions of the optical modulation observed in HD199143 (F7 V) and
CD-641208 (K7V). We also used cross-correlation techniques to determine stellar
parameters such as radial velocities and rotational velocities. Lomb-Scargle
periodograms were used to obtain the rotational periods from differential
magnitude time series. Results: We find periods and inclinations of 0.356 days
and 21.5deg for HD199143, and 0.355 days and 50.1deg for CD-641208. The spot
maps of HD199143 obtained from the ME and TR methods are very similar, although
the latter gives a smoother distribution of the filling factor. Maps obtained
at two different epochs three weeks apart show a remarkable increase in spot
coverage amounting to ~7% of the surface of the photosphere over a time period
of only ~20 days. The spot maps of CD-641208 from the two methods show good
longitudinal agreement, whereas the latitude range of the spots is extended to
cover the whole visible hemisphere in the TR map. The distributions obtained
from the first light curve of HD199143 show the presence of an extended and
asymmetric active longitude with the maximum filling factor at longitude
~325degree.Comment: Accepted by A&A. 13 pages, 13 figures (4 online included), 5 Table
- …
