3D numerical simulations of a horizontal magnetic flux tube emergence with
different twist are carried out in a computational domain spanning the upper
layers of the convection zone to the lower corona. We use the Oslo Staggered
Code to solve the full MHD equations with non-grey and non-LTE radiative
transfer and thermal conduction along the magnetic field lines. The emergence
of the magnetic flux tube input at the bottom boundary into a weakly magnetized
atmosphere is presented. The photospheric and chromospheric response is
described with magnetograms, synthetic images and velocity field distributions.
The emergence of a magnetic flux tube into such an atmosphere results in varied
atmospheric responses. In the photosphere the granular size increases when the
flux tube approaches from below. In the convective overshoot region some 200km
above the photosphere adiabatic expansion produces cooling, darker regions with
the structure of granulation cells. We also find collapsed granulation in the
boundaries of the rising flux tube. Once the flux tube has crossed the
photosphere, bright points related with concentrated magnetic field, vorticity,
high vertical velocities and heating by compressed material are found at
heights up to 500km above the photosphere. At greater heights in the magnetized
chromosphere, the rising flux tube produces a cool, magnetized bubble that
tends to expel the usual chromospheric oscillations. In addition the rising
flux tube dramatically increases the chromospheric scale height, pushing the
transition region and corona aside such that the chromosphere extends up to 6Mm
above the photosphere. The emergence of magnetic flux tubes through the
photosphere to the lower corona is a relatively slow process, taking of order 1
hour.Comment: 53 pages,79 figures, Submitted to Ap