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Writhe in the Stretch–Twist–Fold Dynamo

Mahboubeh Asgari–Targhi† and Mitchell A. Berger‡

This paper looks at the influence of writhe in the stretch-twist-fold dynamo. We consider a thin flux tube distorted by simple stretch,
twist, and fold motions and calculate the helicity and energy spectra. The writhe number assists in the calculations, as it tells us how
much the internal twist changes as the tube is distorted. In addition it provides a valuable diagnostic for the degree of distortion. Non
mirror-symmetric dynamos typically generate magnetic helicity of one sign on large scales and the opposite sign on small scales. The
calculations presented here confirm the hypothesis that the large scale helicity corresponds to writhe and the small scale corresponds to
twist. In addition, the writhe helicity spectrum exhibits an interesting oscillatory behavior. The technique of calculating Fourier spectra
for the writhe helicity may be useful in other areas of research, for example the study of highly coiled molecules.

1 Introduction

Magnetic fields are ubiquitous in the universe. The magnetic fields in the Sun, galaxies and planets are
generated and maintained by dynamo action, the process in which growth of magnetic field is caused by
the motion of electrically conducting fluid, where the kinetic energy is converted into magnetic energy
(Beck et al. 1996, Krause 1993, Kronberg 1994, Kulsrud 1999, Ossendrijver 2003, Tobias 2002, Widrow
2003, Yoshizawa et al. 2004, Zweibel and Heiles 1997).

The magnetic field in the Sun rises through its convective zone (CZ) in the form of isolated strands
known as flux tubes (Parker 1979). Observations suggest that flux tubes emerging through the photosphere
possess internal twist (Bao and Zhang 1998, Pevtsov et al. 1995). This indicates that flux tubes carry
electrical current (i.e. they have twisted field lines) prior to emergence. For example, (Leka et al. 1996)
have shown that the current increases in proportion to the flux during the period of emergence. The twist
in emerging flux tubes could originate deep in the convection zone as part of the dynamo process (Berger
and Ruzmaikin 2000, Brandenburg et al. 2002), or could be present due to the effects of Coriolis forces
on rising flux (Longcope and Klapper 1997, Longcope et al. 1999, Blackman and Brandenburg 2003).
Additional twist may be created in pre-existing flux due to surface motions such as differential rotation or
shear motions (van Ballegooijen 1999, DeVore 2000).

The inherent twist in the emerging field lines may provide important information on the nature of the
solar dynamo (Rust and LaBonte 2005, Rust and Kumar 1996). We cannot see below the photosphere
(although helioseismology (Basu 1997, Howe et al. 2000, Schou et al. 1992, Thompson et al. 2003) provides
extensive information on rotational velocities in the interior of the sun). Observing the emergence of twist
and other helicity-containing structure (in either newly emerging flux or pre-existing flux) may prove to
be an invaluable diagnostic for magnetic field dynamics in the solar dynamo (Brown et al. 1999, Démoulin
et al. 2002, Pevtsov et al. 1995, Pevtsov and Latushko 2000, Rust and Kumar 1996).

The nonlinear dynamics of a thin magnetic flux tube rising through the convection zone has been
investigated by several authors (Spruit 1981, Choudhuri and Gilman 1987, Archontis et al. 2004, Chou and
Fisher 1989, D’Silva and Choudhuri 1993, Fan et al. 1993). Numerical simulations of Spruit’s equations
suggest that the magnetic flux tube rises from the base of the convection zone in about 2-3 months
(Longcope and Klapper 1997). These models follow from applying the ideal MHD equations to a slender
tube of flux. The tube is assumed slender in a sense that its cross-sectional radius is negligible compared
to both the atmospheric scale height and any scale of variation along the tube. In Longcope and Klapper’s
model, the presence of some twist is essential in order to formulate a self-consistent picture of a flux tube.
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2 WRITHE IN THE STRETCH–TWIST–FOLD DYNAMO

Without twist, a real flux tube would lack integrity and would not behave as a single object for very long
(Parker 1979). Linear analysis (Tsinganos 1980) and numerical simulations (Schussler 1979, Longcope
et al. 1996) confirm that an untwisted magnetic flux tube is quickly fragmented by hydrodynamic forces.
When twisting the flux tube about the axis, the field lines provide a tension that helps to prevent this
fragmentation (Moreno-Insertis and Emonet 1996).

The behaviour of thin flux tubes in a turbulent fluid provides excellent geometrical insights into the
dynamo process. The stretch-twist-fold (STF) dynamo (see Figure 1) is a simple qualitative example of a
fast dynamo (Vainshtein and Zeldovich 1972, Zeldovich et al. 1983, Vainshtein et al. 1997, 1996, Childress
and Gilbert 1995, Moffatt and Proctor 1985). This dynamo starts by first stretching a closed flux tube in
two dimensions to twice its length. If the flow is incompressible then the volume of the tube is preserved.
In the next step, the rope is twisted into a figure 8 and then it is folded so that there are two loops with
their fields pointing in the same direction and they occupy the same volume as the original flux tube. The
two loops merge through small diffusive effects. This last step is important in the sense that the new field
can not easily undo itself and therefore the whole process becomes irreversible. The newly merged loops
are topologically the same as the original loop, with the field strength scaled up by a factor of 2.

After repeating the algorithm n times, the field in the flux tube grows by a factor of 2n. If one cycle
takes time T then the growth rate is T−1 ln 2. This makes the dynamo a fast dynamo, where the growth
rate does not decrease with decreasing resistivity (Moffatt and Proctor 1985).

The twist part of the cycle allows the field in the folded loop to add coherently rather than canceling. To
twist the loop the motions need to leave the plane and go into the third dimension. The degree to which
the flow twists the tube is important here. For instance, if the field were twisted too far, or not far enough,
then the resulting field would not align itself with the original field. The net angle of rotation is governed
by the geometry of the flow. Maggioni and Ricca (2006) give analytic expressions for several classes of
curves, including many of the curves resulting from the STF dynamo.

A thin flux tube can be specified by the geometry of its central axis, the radius (and net magnetic
flux) of the tube surrounding the axis, and a twist function: how much field lines twist about the axis as
a function of position along the axis. We ignore the distribution of flux or twist in the radial direction.
The axis geometry can be described locally in terms of two intrinsic quantities, the curvature and torsion.
In addition, there are three important global quantities, the twist number, the writhe (Berger and Field
1984, Moffatt and Ricca 1992, Berger and Prior 2006, Maggioni and Ricca 2006) (briefly, a measure of
coiling), and the helicity, the measure of linking number of the field lines averaged over all pairs of field
lines, and weighted by flux (Moffatt 1969). Longcope and Klapper (1997) have developed a detailed theory
of the evolution of a thin flux tube in terms of these geometric quantities. In particular, they allow the
distribution of twist to vary along the axis of the tube.

For the purposes of this paper, we make a strong simplification: we assume that the twist will at all times
be uniformly distributed. Uniform distribution of twist is valid in an equilibrium situation (Longcope and
Klapper 1997, Parker 1979). In a dynamic situation, the assumption will be justified if the time-scale for
relaxation to a uniform distribution of twist is small compared to the timescales for evolution of the shape
of the tube axis. As redistribution of twist operates at near Alfvén speeds this difference in timescales
should be valid for tube motions much slower than the Alfvén speed.

The growing complexity of the field in the STF process can be characterized by the evolution of the
magnetic helicity (Vainshtein and Zeldovich 1972). This is discussed in (Brandenburg and Subramanian
2005) and (Gilbert 2002): repeated application of the STF cycle leads to a large scale writhe helicity
associated with the repeated crossings of the flux tube and oppositely signed twist helicity at a much
smaller scale.

Suppose that the twist process proceeds as in figure 1C (rather than the mirror image process). Gilbert
(Gilbert 2002) notes that after folding, the twisted rope has a writhe of approximately W ≈ −1. This
gives the writhe contribution to the helicity of Hwr ≈ −1. There is a compensating twist of field lines
inside the tube, giving a twist of +1, and the twist contribution to the helicity is Htw = +1. These figures
assume that the fold part of the cycle returns the field to a nearly flat state. If the field shape is more
three-dimensional, then the writhe and twist must be calculated more carefully, as will be done below in
section 3. The total helicity after one STF step is H = Hwr + Htw = 0. Gilbert suggests that the two
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forms of helicity are associated with different scale of the field. The positive twist helicity is associated
with structure internal to the tube, presumably at small scales, whereas the negative writhe helicity is
related to the coiling of the tube at a larger scale.

Central to the discussion of the large scale dynamo is the so-called alpha effect which explains the
generation of a mean field if the turbulence lacks mirror symmetry, e.g. if the flow has kinetic helicity.
Large scale dynamos produce small scale helical fields as a waste product that quench the large scale
dynamo and hence quench the alpha effect (Brandenburg 2001, Field and Blackman 2002). If most of the
helicity of the solar magnetic field is produced by the α effect, then one would expect much of the solar
magnetic field to be bi-helical (Blackman and Brandenburg 2003, Blackman and Field 2000, Longcope
et al. 1996, Yousef and Brandenburg 2003), in that the field that is generated by the α effect has positive
and negative magnetic helicity at different scales, but hardly any net magnetic helicity. To the extent
that the helical structure lies in individual tubes (rather than linking between tubes) these different scales
of helicity could manifest themselves in twist and writhe structure. Evidence for bi-helical fields can be
seen in the fact that bipolar regions are tilted according to Joy’s law (D’Silva and Choudhuri 1993, Hale
et al. 1919), suggesting the presence of positive (Northern) magnetic helicity in addition to the negative
magnetic helicity found in Northern active regions.

On the other hand, if most of the sun’s helicity is caused by differential rotation (Berger and Ruzmaikin
2000), the helicity in each hemisphere might have a strong dominant sign (negative in the North). The
differential rotation causes segregation of magnetic helicity in physical space, i.e. between north and south,
while the α effect causes a segregation of helicity in wavenumber space.

An emerging flux tube can carry helicity as internal twist within the tube, or as writhe (Longcope et al.
2007). To assist in interpreting both dynamo theory and observations of emerging helical structure, we
investigate how the decomposition of helicity into twist and writhe (defined in Section 2) relates to the
helicity and energy spectra. Consider an STF dynamo with right handed twisting motions (corresponding to
the effects of Coriolis forces in the Northern hemisphere of the sun). According to Gilbert (Gilbert 2002)
and Brandenburg and Subramanian (Brandenburg and Subramanian 2005), the STF process generates
positive helicity at the largest scales, and negative helicity at small scales. The large scale helicity is then
interpreted as writhe, while the small scale helicity corresponds to twist. We wish to test this interpretation
with explicit calculations.

The plan of this paper is as follows. In section 2, we review the magnetic helicity, twist, and writhe of
flux tubes. This section also gives a review of the helicity and energy spectra. In section 3, we provide
details of our thin flux tube model and present our calculations. Conclusions will be given in section 4.

2 Helicity, twist, and writhe

2.1 Definitions

The Gauss linking number L measures the linking of two curves (Epple 1998). Similarly, magnetic helicity
H can be interpreted as the average linking of pairs of magnetic field lines. We consider a closed tube of
magnetic field lines with axial flux Φ. The helicity per unit flux H/Φ2 of the magnetic tube can be divided
into two pieces (Berger and Field 1984, Moffatt and Ricca 1992) called the writhe helicityW and the twist
helicity T .

Motions which do not break the curves conserve L, just as ideal motions conserve magnetic helicity H.
The relation H/Φ2 = T +W is analogous to the relation L = T +W known to hold for the edges of a
ribbon (Călugăreanu 1961, Pohl 1980, White 1969). The twist T measures how much a secondary curve
(for example one edge of a ribbon) twists about the first (the central axis of the ribbon). Let s denote arc
length along a curve, T(s) the tangent vector, and V̂(s) a unit vector pointing to the secondary curve.
Then

T =
1

2π

∮
T · V̂ × dV̂

ds
ds. (1)
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Figure 1.: The stretch-twist-fold process. Top row: an initial circular flux tube (W = 0) is stretched
(W = 0) and twisted (W = 0.295). Bottom row: the tube is compressed into a figure 8 (W = 0.739),
folded (W = 1.12), and compressed again (W = 1.15). Writhe can be computed by counting the (signed)
number of crossings seen in a plane projection, then averaging over all projection angles. Thus for the
figure 8 a positive crossing is seen from 74% of all projection angles. Note that the last two tubes have a
writhe slightly greater than one; from some angles these tubes exhibit two crossings (e.g. if rotated from
their present positions by 45◦ about the vertical).

For magnetic fields, this twist number measures field aligned current. In particular, if J‖ is the current
parallel to the magnetic field, and µ0 is the vacuum permeability, then

dT
ds

=
µ0J‖

4π|B|
. (2)

The writhe number W is defined by the integral

W =
1

4π

∮ ∮
x(s)− x(s′)
|x(s)− x(s′)|3

· dx(s)
ds
×dx(s′)

ds′
ds ds′. (3)

Simpler and more efficient methods have been found for actually calculating W (Berger and Prior 2006).
Note that T is defined by a single integral and therefore has a well defined local density. In contrast, W is
defined by a double integral and thus has no local density; it depends on the global geometry of the curve
and can not be calculated by adding contributions from individual short sections of the curve.

Because of the conservation of helicity, a reduction in twist will result in an increase in W. Therefore,
a change in writhe will have the opposite sign as the change in T . Using the measurement of writhe, we
determine the internal twist by

T =
H

Φ2
−W. (4)

The opportunity to change twist into writhe and decrease the energy may result in writhing instabilities
where the axis forms helical structures (Longcope and Klapper 1997, Torok and Kleim 2005, 2003, Torok
et al. 2004, Valori et al. 2005).



ASGARI–TARGHI & BERGER 5

2.2 Energy and helicity spectra

The Fourier transforms of the magnetic field and vector potential are (using B = ∇×A)

B̃k =
1

(2π)3

∫
B(x)e−ik·rd3x = −ik× Ãk. (5)

With this convention, the magnetic energy spectrum is (Moffatt 1978)

Mk =
1
2

∫
k−shell

B̃∗k · B̃k k
2dΩk, (6)

and the helicity spectrum is

Hk =
1
2

∫
k−shell

(Ã∗k · B̃k + Ãk · B̃∗k)k2dΩk, (7)

where dΩk is the solid angle element in Fourier space.
The helicity and energy spectra are normalized so we have∫ ∞

0

Hkdk = 〈A ·B〉 V ≡ H. (8)

∫ ∞
0

Mkdk =
〈

1
2
B2.

〉
V ≡M. (9)

where H and M are magnetic helicity and magnetic energy, respectively, V is the volume element and the
angular brackets denote volume averages.

We can easily show that Hk is gauge invariant: if A→ A+∇φ, then Ãk → Ãk +iφ̃kk. But as ∇·B = 0,
we have iφ̃kk · B̃k = 0. Thus equation 7 is unchanged by the gauge transformation.

We can decompose the Fourier transformed magnetic vector potential Ãk, into a longitudinal component,
h‖, and eigenfunctions h± of the curl operator

Ãk = a+
k hk

+ + a−k hk
− + a

‖
khk
‖, (10)

with

ik× hk
± = ±khk

±, k = |k| , (11)

and 〈
hk

+∗ · hk
+
〉

=
〈
hk
−∗ · hk

〉
=
〈
hk
‖∗ · hk

‖
〉

= 1, (12)

The longitudinal part a‖khk
‖ is parallel to k and vanishes after taking the curl to calculate the magnetic

field. (It can also be set to zero by choosing a Coulomb gauge potential, ∇ ·A = 0.)
The complex coefficients a±k (t) depend on k and t, and the eigenfunctions h±k , which form an orthonormal

set, depend on k (Brandenburg and Subramanian 2005). They are given by

h±k =
1√
2
k× (k× e)∓ ik(k × e)
k2
√

1− (k · e)2/k2
, (13)
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where e is an arbitrary unit vector that is not parallel to k. Using the above relations, we can then write
the magnetic helicity spectrum as

Hk = k(
∣∣a+

k

∣∣2 − ∣∣a−k ∣∣2)V, (14)

and energy spectrum in the form

Mk =
1
2
k2(
∣∣a+

k

∣∣2 +
∣∣a−k ∣∣2)V, (15)

where V is the volume of integration. From equations (14) and (15) we have the realizability condition

1
2
k |Hk| ≤Mk. (16)

This condition becomes an equality for the eigenfields h+
k and h−k .

The energy and helicity spectra are closely related to the Fourier transform of the two-point correlation
function Rij(r) of the magnetic field (Moffatt 1978). Define

Rij(r) =
∫
Bi(x)Bj(x + r)d3x. (17)

Then in Fourier space one finds

R̃ij(k) =
1

(2π)3

∫
Rij(r)e−ik·rd3r (18)

= B̃k iB̃∗k j . (19)

We can then integrate over spherical shells in k space as in equations 6 and 7 (with the help of 5):

Mk =
1
2

∫
k−shell

R̃ii k
2dΩk, (20)

Hk =
∫
k−shell

−iε`mnk`R̃mn
k2

k2dΩk. (21)

Thus the trace of R̃ gives the energy spectrum, while the helicity spectrum comes from the anti-symmetric
(and perpendicular to k) part of R̃. This relation between spectra and two point correlations will be
discussed further in section 2.4.

2.3 The relation between helicity spectrum and spatial structure

The helicity spectrum measures the distribution of twist, shear, and linking on different length scales. It
fails, however, in detecting spatial fluctuations of helicity. For example, consider the field

B = (sin 2x cos 2y,− cos 2x sin 2y, sinx sin y). (22)

This field consists of twisted flux tubes aligned along the z direction (see Figure 2). The helicity spectrum
for this field is identically zero, i.e. Hk = 0 for all k. While the field contains individual helicity containing
tubes of alternating sign, the tubes have the same size. Thus the positive helicity exactly cancels the
negative helicity at the same places in the spectrum. A quantity related to helicity which detects spatial
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Figure 2.: A field whose helicity spectrum Hk = 0 for all k.

distribution in weakly inhomogeneous turbulence has been proposed by Subramanian and Brandenburg
(2006).

Helicity containing structures are inherently three dimensional. However, we can create a simple field
which only varies in one dimension to investigate how a simple crossed field is represented in a Fourier
spectrum:

B =
1√
2πσ

e−(z−w/2)2/2σ2
x̂ + e−(z+w/2)2/2σ2

ŷ. (23)

This field consists of two layers of flux separated by a distance w. Each layer has unit flux (per unit length
in x and y directions) distributed with Gaussian profiles of width σ; their fields are perpendicular to each
other.

Figure 3.: Left: the helicity spectrum for two perpendicular thin slabs of magnetic flux. The separation
between the slabs has been set at w = 1. Curves are given for σ = 0.2 (dashed), σ = 0.1 (thin solid), and
σ → 0 (thick solid). Right: two crossed thin tubes of magnetic flux. The separation between the tubes
is w. The helicity spectrum for this configuration is identical to that of the crossed slabs in limit of zero
radius (thick solid curve).

Taking the Fourier transform in the z direction of the above magnetic field, we have

B̃k = eikw/2 e−k
2σ2/2 x̂ + e−ikw/2 e−k

2σ2/2 ŷ. (24)
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This gives a helicity spectrum

Hk =
2
πk

e−k
2σ2

sin(kw) (25)

(see Figure 3). Here the envelope has width σ/
√

2 and the periodicity is 2π/w. The helicity spectrum
broadens as the width σ of the layers decreases; in the limit σ → 0 it becomes

B = δ(z − w/2)x̂ + δ(z + w/2)ŷ; (26)

Hk =
2
πk

sin(kw). (27)

2.4 Why does the helicity spectrum oscillate for localized flux?

What is the origin of the sin(kw) factor in the helicity spectrum? We can better understand this effect by
recalling the close relation between the helicity spectrum and the Fourier representation of the two-point
correlation function Rij(r).

For the two slab field above (26), as variations only occur in z, we can write

R12(z) =
∫
B1(z0)B2(z0 + z)dz0 = δ(z + w). (28)

Similarly R21(z) = δ(z − w). Fourier transforms give

R̃12 =
1

2π
e−ikw; R̃21 =

1
2π

eikw. (29)

The one dimensional helicity spectrum analogous to (21) is

Hk =
−iε3mnkR̃mn(k)

k2
− −iε3mnkR̃mn(−k)

k2
(30)

=
1
ik

(
(R̃12(k)− R̃21(k))− (R̃12(−k)− R̃21(−k))

)
(31)

=
2
πk

1
2i
(
eikw − e−ikw

)
=

2
πk

sin(kw), (32)

in accord with our previous calculation.
We can do a similar calculation for two crossed tubes (see right figure 3). Consider two thin unit flux tubes

aligned along the x axis at z = w/2, and along the y axis at z = −w/2. Then one finds R12(z) = δ(z+w)
and R21(z) = δ(z − w) as above (multiplied by flux squared). This leads to the same spectrum for Hk.

Note that the above fields have net flux in the x and y directions. Despite the infinite domain, the helicity
is finite. A more physically reasonable field with zero net flux has two oppositely directed tubes in the x
direction intertwined with two in the y direction:

B = δ(z − 3w/2)x̂ + δ(z − w/2)ŷ− δ(z + w/2)x̂− δ(z + 3w/2)ŷ. (33)

This field still has an oscillatory spectrum, albeit with two modes of oscillation:

Hk =
6
πk

sin(kw)− 2
πk

sin(3kw). (34)
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3 Calculations

3.1 Method

In this section, we consider the behavior of helicity in the stretch-twist-fold picture. Our aim is to under-
stand how helicity is distributed over different scales, and how that distribution relates to the twist-writhe
decomposition. We start with a magnetic flux tube of circular cross section and unit flux. The radius a
of the tube is held constant. At first, we consider a circular axis shape, then subject the shape to stretch,
twist, and fold operations. The writhe is calculated employing the methods in (Berger and Prior 2006).
Using this measurement of writhe, we determine the internal twist from equation (4).

In order to calculate the helicity and energy spectra, the tube is placed inside a three dimensional cubic
grid (we employ 1283). The central axis of the tube is represented by n points (n = 300 seems sufficient).
At each point on the grid the code first determines whether it is within a distance a of the axis curve; if
so then the magnetic field is determined. A fast Fourier transform then leads to a determination of the
spectra.

One may worry that helicity is not always well-defined for periodic boxes (Berger 1997). This problem
only presents itself when there is net flux in some direction; but our closed tubes do not have net flux in
any direction.

Consider first a torus with minor radius a and major radius R. The circular axis of the torus lies in a
horizontal plane encircling the z axis. In cylindrical coordinates a point is given by (ρ, φ, z). We will also
need toroidal coordinates (r, θ, φ): here r denotes the distance of a point from the circular axis of the torus,
and θ denotes angle the short way around (with θ = 0 closest to the z axis). We have

ρ = R− r cos θ. (35)

The field line equations are

dr
Br

=
r dθ
Bθ

=
ρ dφ
Bφ

. (36)

So,

Bθ =
r dθ
ρ dφ

Bφ =
r

R− r cos θ
dθ
dφ
Bφ. (37)

If we replace φ by arc length s along the toroidal axis, this becomes

Bθ =
rR

R− r cos θ
dθ
ds
Bs. (38)

The field line derivative dθ/ds gives the rate of increase of twist T with arc length s, i.e.

dθ
ds

= 2π
dT
ds

(torus). (39)

Next consider a thin flux tube of (almost) arbitrary shape. Locally, we can replace major radius R in
the above analysis by the curvature radius R(s) of the central axis of the tube. We also lose the angle φ,
replacing it by arc length s along the axis. The angle θ = 0 now points in the direction of the curvature
vector. But in addition there will be an extra source of twist due to the torsion τ of the axis (Moffatt and
Ricca 1992):

dθ
ds

= 2π
(

dT
ds
− τ
)
. (40)
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We assume twist (and thus parallel current) is uniformly distributed along the total arc length L of the
tube. In this case

dT
ds

=
H −W
L

(41)

Thus we have

Bθ =
2πrR(s)

R(s)− r cos(θ)

(
H −W
L

− τ
)
Bs. (42)

We keep Bs uniform inside the tube. In order to find the upper limit for a, in the equation (42), the
denominator R−r cos θ should be more than zero. Hence, R > r cos θ and for θ = 0, we should have R > r.
Since we have 0 ≤ r ≤ a, the radius of curvature R(s) should always be larger than the minor radius a.

We employ a uniform radius a = 1.6 in our study (the grid spacing is one). Larger radii make it more
difficult to separate large and small scales in the spectra. Smaller radii are more subject to edge effects
(i.e. the boundary of the flux tube is not properly resolved, resulting in significant changes to the spectra).

Helicity is measured in units of Φ2 (equivalently, we can set flux Φ = 1 and let Bs = 1/(πa2). Energy
is measured in units of Φ2/a. In the graphs, wavenumber k is measured in units of k0 = 2π/N , where
N is the size of the grid (we use N = 128). Thus a wavelength of λ corresponds to a wavenumber of
k = k−1

0 (2π/λ) = N/λ.
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Figure 4.: Spectra of a circular tube of radius a = 1.6 placed in a 1283 grid. The tube has aspect ratio
= 26. (a) and (b): H = W = T = 0. The magnetic helicity spectrum (a) shows the helicity remains zero
for large and small scales (small and large wave numbers) despite any edge effects. The energy spectrum
(b) shows a maximum at the wave number k = 17 and a minimum at the wave number k = 48. The edge
effects prevent the energy in small scales from reaching zero value. (c) After increasing the internal twist of
the circular tube to one, we see an initial increase in the helicity spectrum. (d) The corresponding increase
in the energy spectrum of the circular tube.
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Table 1.: Mean wave numbers for the twisted tube of 5a. The mean wave numbers are calculated in four
different ways, employing weightings for energy, helicity, twist, and writhe.

k̄(M) (λ̄(M)) k̄(H) (λ̄(H)) k̄(H+) (λ̄(H+)) k̄(H−) (λ̄(H−))
T = −W (H = 0) 21.7(5.90) 9.20(13.1) 6.37(20.0) 12.0(10.6)
H = W (T = 0) 21.7(5.90) 8.50(15.0) 7.57(16.1) 9.77(13.1)
(H = 0) - (T = 0) (T only) 21.7(5.89) 22.0(5.81) 56.4(2.27) 21.5(5.95)

3.2 Circular tube

Figure 4 shows the helicity and energy spectra for a circular magnetic flux tube with major radius 41.3
(aspect ratio 26). Note that edge effects give no fluctuations whatsoever to the helicity spectrum, although
they do appear in energy (for wave numbers above 50).

The minor radius a provides a significant length scale for the tube, which should affect the spectra.
For the tube with internal twist, the azimuthal field reverse over one diameter, i.e. half a wavelength
corresponds to 2a. Thus we infer a characteristic wavelength λa = 4a and a corresponding wavenumber
ka = N/4a. For our parameters ka = 20, corresponding well to the peak of the helicity spectrum for the
tube with internal twist (figure 4(c)). Also the energy spectrum for the T = 0 tube has a peak slightly
below 20. This peak moves to the right for T = 1.

3.3 Twisted tubes and folded tubes

First we stretch the flux tube to twice its length preserving its volume. The helicity, writhe, and twist
remain zero. Next we twist the flux tube, keeping the helicity zero. To easily see the effects on the spectra,
we have twisted the tube axis by a considerable amount 3π (Figure 5). The measurement of writhe shows
W = 1.152. With the stretched and twisted tube, some new large-scale lengths become apparent. For
example, the spacing between two points on opposite sides of the tube gives a scale λ1 ≈ 25.1.

Here the helicity spectrum shows strong oscillations. The oscillation period is 5.36, corresponding to a
lengthscale of 128/5.36 = 23.9. This is very close to the typical separation between neighboring sections of
the tube λ1 ≈ 25. Here we see an effect similar to that discussed in section 2.4: the two-point correlation
function for the magnetic field of a thin tube will have sharp peaks at typical separation lengths. The
helicity spectrum oscillates with a wavelength determined by these separation lengths.

We can separate the writhe and twist contributions to the helicity spectrum as follows: first, obtain the
spectrum Hk(H = 0) for a tube with zero net helicity. This includes equal and opposite twist and writhe
contributions. Next obtain Hk(T = 0), the spectrum for a tube with the same shape but zero internal twist
(thus zero internal electrical current). We will call this latter spectrum the writhe helicity spectrum. Finally,
the twist helicity spectrum will be defined as the difference between the two, Hk(H = 0)−Hk(T = 0). The
final two figures in 5 show these two spectrums. Figure 5d shows that writhe helicity takes both positive
and negative values at large scales and at small scales it reaches zero. Thus while it is concentrated at
large scales, as expected, it also displays large oscillations.

Figure 6 shows the spectra of the folded tube (bottom middle tube in figure 1) with writhe W = 1.118.
Qualitatively the spectra are similar to the twisted tube spectra. Here the oscillations in the helicity
spectrum have a smaller frequency of about 3.6, corresponding to a lengthscale of 36. Taken as a whole,
the folded tube has a size of about 36× 55× 33.

Table 1 provides the mean wave numbers for the twisted tube. Using these values, we find the wave
length λ̄k = 128/k̄, where k̄ is the mean wavenumber given some weighting. Thus if we weight by energy,

k̄(M) =
∑
kMk∑
Mk

(43)
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Figure 5.: Spectra of a tube turned through an angle of 3π (W = 1.152). Figure (b) gives the helicity
spectrum for the tube with total helicity H = 0. Between the wave number k = 1 to k = 4 (indicator of
large scale) the helicity is positive. Then there is a sharp decrease in the value of helicity, having negative
value and from then on the helicity oscillates between negative and positive values. From Fourier analysis
the oscillation frequency is 5.36. Figure (c) shows the energy distribution of the twisted flux tube. (d)
The writhe helicity spectrum. (e) The twist helicity spectrum. Note that the range for graph (e) is much
smaller than graph (d).

while if we weight by helicity (actually |Hk|)

k̄(H) =
∑
k |Hk|∑
|Hk|

. (44)

We then compare the values of λ̄k with λa = 4a = 4 × 1.6 = 6.4. We look at three cases: zero helicity,
writhe helicity, and twist helicity. When using energy as the weighting factor for all three, λ̄k(M) is very
close to λa. In the second column, with helicity |Hk| as the weighting factor, there is a clear separation
between the twist helicity (at a length scale near λa) and the writhe helicity (at two and half times larger
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(d) Writhe helicity spectrum
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(e) Twist helicity spectrum

Figure 6.: Spectra for a folded tube. Figure (b) gives the helicity spectrum. For wave numbers k = 1 to
k = 4 the helicity is positive. Then there is a sharp decrease in the value of helicity and from then on
helicity oscillates between negative and positive values, with a frequency of 3.58. (c) Shows the energy
distribution of the folded flux tube. (d) The writhe helicity spectrum. (e) The twist helicity spectrum.
Note that the range for graph (e) is much smaller than graph (d).

scale). We can try to sharpen this separation by weighting with only the positive values of the helicity
spectrum (H+) or negative values (H−). Here the positive writhe goes to slightly larger scales (slightly
smaller k̄). The negative writhe comes slightly closer to λa. The positive part of the twist helicity is at
very large wave numbers, suggesting perhaps some slight edge effects or numerical noise.

3.4 The writhe spectrum of compact curves

Maggioni and Ricca (2006) present several families of analytic closed curves, and give a detailed analysis
of the behaviour of both intrinsic quantities such as curvature and torsion, and global quantities such as
writhe and elastic energy. There is a possible application in biology: many long biological molecules must
be strongly coiled in order to fit inside cells. This can require multiple levels of supercoiling. We note that
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Figure 7.: Two hypocycloids with their writhe spectra. On the left β = 0.6 with W = 1.1 (red solid line),
while on the right β = 2 with W = 2.0 (blue dashed line).

the technique of finding a Fourier spectrum for the writhe as presented here may complement this study.
A Fourier analysis shows how the writhe distributes itself on different length scales. As a simple example,
figure 7 shows two realizations of the hypocycloid curve described by

x(t) = (cos 2t+ β cos 3t, sin 2t− β sin 3t, β sin t), (45)

with free parameter β. The usual oscillations still occur with these shapes; it may be that for more irregular
shapes the oscillations would smooth out.

4 Conclusions

This paper has analyzed the influence of twist and writhe numbers on helicity and energy spectra in the
stretch-twist-fold dynamo. Calculating the writhe number of a flux tube has two purposes. First, it assists
us in finding out how much the internal twist changes as the tube is distorted. This greatly simplifies the
modeling of a thin flux tube. Second, the writhe provides a valuable diagnostic for large scale structure. We
have compared this diagnostic with the more usual one: examining power spectra at low wave numbers.
We showed that there is a strong correlation between the helicity distribution over different scales and
the twist-writhe decomposition. This correlation shows up in the mean wave number calculations (table
1). As expected (Brandenburg and Subramanian 2005, Gilbert 2002), twist helicity appears at relatively
large wave numbers, while writhe helicity appears at smaller wave numbers. The mean wavenumber for
twist helicity corresponds roughly to a wavelength of four times the radius of the tube. However, the
helicity spectrum for writhe helicity is more complicated. While there is net power at low wave numbers,
the spectrum also oscillates with a wide envelope. Although there is a great deal of cancellation between
positive and negative helicity, there is no clear boundary between negative helicity at large scales and
positive helicity at small scales.

Of course, an ensemble of flux tubes of many sizes will all have their own oscillating spectra, somewhat
out of phase with each other. Thus, in such an ensemble the oscillations might cancel, leaving only the
envelope. Similarly, irregular curves may have oscillations with a broad range of frequencies, again with
the result of smoothing out the writhe spectrum. However the large gap between mean wave numbers for
twist and writhe helicity will likely survive.

5 Acknowledgments

We are very grateful to Andrew Gilbert, Pascal Démoulin and Chris Prior for helpful discussions.



ASGARI–TARGHI & BERGER 15

REFERENCES

Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A. and O’Shea, E. (2004). Emergence of magnetic
flux from the convection zone into the corona, Astronomy and Astrophysics 426: 1047–1063.

Bao, S. and Zhang, H. (1998). Patterns of current helicity for the twenty-second solar cycle, The Astro-
physical Journal 496: L43–L46.

Basu, S. (1997). Seismology of the base of the solar convection zone, Monthly Notices of the Royal
Astronomical Society 288: 572–584.

Beck, R., Brandenburg, A., Moss, D., Shukurov, A. and Sokoloff, D. (1996). Galactic magnetism: Recent
developments and perspectives, Annu. Rev. Astron. Astrophys 34: 155–206.

Berger, M. A. (1997). Magnetic helicity in a periodic domain, Journal of Geophysical Research 102: 2637–
2644.

Berger, M. A. and Field, G. B. (1984). The topological properties of magnetic helicity, Journal of Fluid
Mechanics 147: 133–148.

Berger, M. A. and Prior, C. (2006). The writhe of open and closed curve, J. Phys. A: Math. Gen.
39: 8321–8348.

Berger, M. A. and Ruzmaikin, A. (2000). Rate of helicity production by solar rotation, Journal of Geo-
physical Research 105: 10481–10490.

Blackman, E. G. and Brandenburg, A. (2003). Doubly helical coronal ejections from dynamos and their
role in sustaining the solar cycle, Astrophys. J. Lett. 584: L99–L102.

Blackman, E. G. and Field, G. B. (2000). Coronal activity from dynamos in astrophysical rotators, Monthly
Notices of the Royal Astronomical Society 318: 724–732.

Brandenburg, A. (2001). The inverse cascade and nonlinear alpha effect in simulations of isotropic helical
hydromagnetic turbulence, The Astrophysical Journal 550: 824–840.

Brandenburg, A., Dobler, W. and Subramanian, K. (2002). Magnetic helicity in stellar dynamos: new
numerical experiments, Astronomische Nachrichten 323: 99–122.

Brandenburg, A. and Subramanian, K. (2005). Astrophysical magnetic fields and nonlinear dynamo theory,
Physics Reports 417: 1–209.

Brown, M. R., Canfield, R. C. and Pevtsov, A. A. (1999). Magnetic helicity in space and laboratory
plasmas, Geophys. Monograph 111, American Geophysical Union, Florida .

Childress, S. and Gilbert, A. D. (1995). Stretch, twist, fold: the fast dynamo, Berlin: Springer .
Chou, D. Y. and Fisher, G. H. (1989). Dynamics of anchored flux tubes in the convection zone. i - details

of the model, The Astrophysical Journal 341: 533–548.
Choudhuri, A. R. and Gilman, P. A. (1987). The influence of the coriolis force on flux tubes rising through

the solar convection zone, The Astrophysical Journal 316: 788–800.
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