49 research outputs found

    Probabilistic classification of anti-SARS-CoV-2 antibody responses improves seroprevalence estimates.

    Get PDF
    OBJECTIVES: Population-level measures of seropositivity are critical for understanding the epidemiology of an emerging pathogen, yet most antibody tests apply a strict cutoff for seropositivity that is not learnt in a data-driven manner, leading to uncertainty when classifying low-titer responses. To improve upon this, we evaluated cutoff-independent methods for their ability to assign likelihood of SARS-CoV-2 seropositivity to individual samples. METHODS: Using robust ELISAs based on SARS-CoV-2 spike (S) and the receptor-binding domain (RBD), we profiled antibody responses in a group of SARS-CoV-2 PCR+ individuals (n = 138). Using these data, we trained probabilistic learners to assign likelihood of seropositivity to test samples of unknown serostatus (n = 5100), identifying a support vector machines-linear discriminant analysis learner (SVM-LDA) suited for this purpose. RESULTS: In the training data from confirmed ancestral SARS-CoV-2 infections, 99% of participants had detectable anti-S and -RBD IgG in the circulation, with titers differing > 1000-fold between persons. In data of otherwise healthy individuals, 7.2% (n = 367) of samples were of uncertain serostatus, with values in the range of 3-6SD from the mean of pre-pandemic negative controls (n = 595). In contrast, SVM-LDA classified 6.4% (n = 328) of test samples as having a high likelihood (> 99% chance) of past infection, 4.5% (n = 230) to have a 50-99% likelihood, and 4.0% (n = 203) to have a 10-49% likelihood. As different probabilistic approaches were more consistent with each other than conventional SD-based methods, such tools allow for more statistically-sound seropositivity estimates in large cohorts. CONCLUSION: Probabilistic antibody testing frameworks can improve seropositivity estimates in populations with large titer variability

    Associations of Polymorphisms in the Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Gene With Subsequent Coronary Heart Disease: An Individual-Level Meta-Analysis

    Get PDF
    Background: The knowledge of factors influencing disease progression in patients with established coronary heart disease (CHD) is still relatively limited. One potential pathway is related to peroxisome proliferator–activated receptor gamma coactivator-1 alpha (PPARGC1A), a transcription factor linked to energy metabolism which may play a role in the heart function. Thus, its associations with subsequent CHD events remain unclear. We aimed to investigate the effect of three different SNPs in the PPARGC1A gene on the risk of subsequent CHD in a population with established CHD. Methods: We employed an individual-level meta-analysis using 23 studies from the GENetIcs of sUbSequent Coronary Heart Disease (GENIUS-CHD) consortium, which included participants (n = 80,900) with either acute coronary syndrome, stable CHD, or a mixture of both at baseline. Three variants in the PPARGC1A gene (rs8192678, G482S; rs7672915, intron 2; and rs3755863, T528T) were tested for their associations with subsequent events during the follow-up using a Cox proportional hazards model adjusted for age and sex. The primary outcome was subsequent CHD death or myocardial infarction (CHD death/myocardial infarction). Stratified analyses of the participant or study characteristics as well as additional analyses for secondary outcomes of specific cardiovascular disease diagnoses and all-cause death were also performed. Results: Meta-analysis revealed no significant association between any of the three variants in the PPARGC1A gene and the primary outcome of CHD death/myocardial infarction among those with established CHD at baseline: rs8192678, hazard ratio (HR): 1.01, 95% confidence interval (CI) 0.98–1.05 and rs7672915, HR: 0.97, 95% CI 0.94–1.00; rs3755863, HR: 1.02, 95% CI 0.99–1.06. Similarly, no significant associations were observed for any of the secondary outcomes. The results from stratified analyses showed null results, except for significant inverse associations between rs7672915 (intron 2) and the primary outcome among 1) individuals aged ≄65, 2) individuals with renal impairment, and 3) antiplatelet users. Conclusion: We found no clear associations between polymorphisms in the PPARGC1A gene and subsequent CHD events in patients with established CHD at baseline

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    Hip-densification of alloy 718 and ati 718PlusÂź

    No full text
    Cast Alloy 718 and ATI 718PlusŸ have been investigated to disclose their ability to develop Hot Isostatic Pressing (HIP) porosity which may form as a consequence of the casting process. Artificial defects were manufactured in cast Alloy 718 and ATI 718PlusŸ block and sealed by electron beam welding prior to the HIP treatment which was carried out at three different temperatures, namely; 1120 °C, 1165 °C, and 1190 °C at a pressure of 100 MPa. It was seen that there are no significant difference in the ability to heal pores in between cast Alloy 718 and ATI 718PlusŸ. No major difference in between the three different temperatures were disclosed whereas the size of the pore seem to have the biggest impact on the ability to heal, which was supported by careful SEM characterization and by simplified calculations considering two different sizes of pores

    A combined gene expression tool for parallel histological prediction and gene fusion detection in non-small cell lung cancer

    No full text
    Accurate histological classification and identification of fusion genes represent two cornerstones of clinical diagnostics in non-small cell lung cancer (NSCLC). Here, we present a NanoString gene expression platform and a novel platform-independent, single sample predictor (SSP) of NSCLC histology for combined, simultaneous, histological classification and fusion gene detection in minimal formalin fixed paraffin embedded (FFPE) tissue. The SSP was developed in 68 NSCLC tumors of adenocarcinoma (AC), squamous cell carcinoma (SqCC) and large-cell neuroendocrine carcinoma (LCNEC) histology, based on NanoString expression of 11 (CHGA, SYP, CD56, SFTPG, NAPSA, TTF-1, TP73L, KRT6A, KRT5, KRT40, KRT16) relevant genes for IHC-based NSCLC histology classification. The SSP was combined with a gene fusion detection module (analyzing ALK, RET, ROS1, MET, NRG1, and NTRK1) into a multicomponent NanoString assay. The histological SSP was validated in six cohorts varying in size (n = 11-199), tissue origin (early or advanced disease), histological composition (including undifferentiated cancer), and gene expression platform. Fusion gene detection revealed five EML4-ALK fusions, four KIF5B-RET fusions, two CD74-NRG1 fusion and three MET exon 14 skipping events among 131 tested cases. The histological SSP was successfully trained and tested in the development cohort (mean AUC = 0.96 in iterated test sets). The SSP proved successful in predicting histology of NSCLC tumors of well-defined subgroups and difficult undifferentiated morphology irrespective of gene expression data platform. Discrepancies between gene expression prediction and histologic diagnosis included cases with mixed histologies, true large cell carcinomas, or poorly differentiated adenocarcinomas with mucin expression. In summary, we present a proof-of-concept multicomponent assay for parallel histological classification and multiplexed fusion gene detection in archival tissue, including a novel platform-independent histological SSP classifier. The assay and SSP could serve as a promising complement in the routine evaluation of diagnostic lung cancer biopsies
    corecore