65 research outputs found

    Whole-genome sequence analysis of a Pan African set of samples reveals archaic gene flow from an extinct basal population of modern humans into sub-Saharan populations

    Get PDF
    BackgroundPopulation demography and gene flow among African groups, as well as the putative archaic introgression of ancient hominins, have been poorly explored at the genome level.ResultsHere, we examine 15 African populations covering all major continental linguistic groups, ecosystems, and lifestyles within Africa through analysis of whole-genome sequence data of 21 individuals sequenced at deep coverage. We observe a remarkable correlation among genetic diversity and geographic distance, with the hunter-gatherer groups being more genetically differentiated and having larger effective population sizes throughout most modern-human history. Admixture signals are found between neighbor populations from both hunter-gatherer and agriculturalists groups, whereas North African individuals are closely related to Eurasian populations. Regarding archaic gene flow, we test six complex demographic models that consider recent admixture as well as archaic introgression. We identify the fingerprint of an archaic introgression event in the sub-Saharan populations included in the models (similar to 4.0% in Khoisan, similar to 4.3% in Mbuti Pygmies, and similar to 5.8% in Mandenka) from an early divergent and currently extinct ghost modern human lineage.ConclusionThe present study represents an in-depth genomic analysis of a Pan African set of individuals, which emphasizes their complex relationships and demographic history at population level.Peer reviewe

    Chemical analysis of Greek pollen - Antioxidant, antimicrobial and proteasome activation properties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pollen is a bee-product known for its medical properties from ancient times. In our days is increasingly used as health food supplement and especially as a tonic primarily with appeal to the elderly to ameliorate the effects of ageing. In order to evaluate the chemical composition and the biological activity of Greek pollen which has never been studied before, one sample with identified botanical origin from sixteen different common plant taxa of Greece has been evaluated.</p> <p>Results</p> <p>Three different extracts of the studied sample of Greek pollen, have been tested, in whether could induce proteasome activities in human fibroblasts. The water extract was found to induce a highly proteasome activity, showing interesting antioxidant properties. Due to this activity the aqueous extract was further subjected to chemical analysis and seven flavonoids have been isolated and identified by modern spectral means. From the methanolic extract, sugars, lipid acids, phenolic acids and their esters have been also identified, which mainly participate to the biosynthetic pathway of pollen phenolics. The total phenolics were estimated with the Folin-Ciocalteau reagent and the total antioxidant activity was determined by the DPPH method while the extracts and the isolated compounds were also tested for their antimicrobial activity by the dilution technique.</p> <p>Conclusions</p> <p>The Greek pollen is rich in flavonoids and phenolic acids which indicate the observed free radical scavenging activity, the effects of pollen on human fibroblasts and the interesting antimicrobial profile.</p

    Genome sequencing highlights the dynamic early history of dogs

    Get PDF
    To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11-16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is necessary

    Defects in memory B-cell and plasma cell subsets expressing different immunoglobulin-subclasses in patients with CVID and immunoglobulin subclass deficiencies

    Get PDF
    Background: Predominantly antibody deficiencies (PADs) are the most prevalent primary immunodeficiencies, but their B-cell defects and underlying genetic alterations remain largely unknown. Objective: We investigated patients with PADs for the distribution of 41 blood B-cell and plasma cell (PC) subsets, including subsets defined by expression of distinct immunoglobulin heavy chain subclasses. Methods: Blood samples from 139 patients with PADs, 61 patients with common variable immunodeficiency (CVID), 68 patients with selective IgA deficiency (IgAdef), 10 patients with IgG subclass deficiency with IgA deficiency, and 223 agematched control subjects were studied by using flow cytometry with EuroFlow immunoglobulin isotype staining. Patients were classified according to their B-cell and PC immune profile, and the obtained patient clusters were correlated with clinical manifestations of PADs. Results: Decreased counts of blood PCs, memory B cells (MBCs), or both expressing distinct IgA and IgG subclasses were identified in all patients with PADs. In patients with IgAdef, B-cell defects were mainly restricted to surface membrane (sm)IgA1 PCs and MBCs, with 2 clear subgroups showing strongly decreased numbers of smIgA1 PCs with mild versus severe smIgA1 MBC defects and higher frequencies of nonrespiratory tract infections, autoimmunity, and affected family members. Patients with IgG subclass deficiency with IgA deficiency and those with CVID showed defects in both smIgA1 and smIgG1 MBCs and PCs. Reduced numbers of switched PCs were systematically found in patients with CVID (absent in 98%), with 6 different defective MBC (and clinical) profiles: (1) profound decrease in MBC numbers; (2) defective CD271 MBCs with almost normal IgG3 1 MBCs; (3) absence of switched MBCs; and (4) presence of both unswitched and switched MBCs without and; (5) with IgG2 1 MBCs; and (6) with IgA

    The time scale of recombination rate evolution in great apes

    Get PDF
    We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471-475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10-15Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- And between-species genome-wide recombination rate variation in several close relatives

    Genome Sequencing Highlights Genes Under Selection and the Dynamic Early History of Dogs

    Get PDF
    Abstract To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we analyzed novel high-quality genome sequences of three gray wolves, one from each of three putative centers of dog domestication, two ancient dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. We find dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow, which confounds previous inferences of dog origins. In dogs, the domestication bottleneck was severe involving a 17 to 49-fold reduction in population size, a much stronger bottleneck than estimated previously from less intensive sequencing efforts. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was far larger than represented by modern wolf populations. Conditional on mutation rate, we narrow the plausible range for the date of initial dog domestication to an interval from 11 to 16 thousand years ago. This period predates the rise of agriculture and, along with new evidence from variation in amylase copy number, implies that the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that surprisingly, none of the extant wolf lineages from putative domestication centers are more closely related to dogs, and the sampled wolves instead form a sister monophyletic clade. This result, in combination with our finding of dogwolf admixture during the process of domestication, suggests a re-evaluation of past hypotheses of dog origin is necessary. Finally, we also detect signatures of selection, including evidence for selection on genes implicated in morphology, metabolism, and neural development. Uniquely, we find support for selective sweeps at regulatory sites suggesting gene regulatory changes played a critical role in dog domestication

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore