758 research outputs found
Scanning tunneling microscopy and spectroscopy of sodium-chloride overlayers on the stepped Cu(311) surface: Experimental and theoretical study
The physical properties of ultrathin NaCl overlayers on the stepped Cu(311)
surface have been characterized using scanning tunneling microscopy (STM) and
spectroscopy, and density functional calculations. Simulations of STM images
and differential conductance spectrum were based on the Tersoff-Hamann
approximation for tunneling with corrections for the modified tunneling barrier
at larger voltages and calculated Kohn-Sham states. Characteristic features
observed in the STM images can be directly related to calculated electronic and
geometric properties of the overlayers. The measured apparent barrier heights
for the mono-, bi-, and trilayers of NaCl and the corresponding
adsorption-induced changes in the work function, as obtained from the distance
dependence of the tunneling current, are well reproduced by and understood from
the calculated results. The measurements revealed a large reduction of the
tunneling conductance in a wide voltage region, resembling a band gap. However,
the simulated spectrum showed that only the onset at positive sample voltages
may be viewed as a valence band edge, whereas the onset at negative voltages is
caused by the drastic effect of the electric field from the tip on the
tunneling barrier
Snell's law for surface electrons: Refraction of an electron gas imaged in real space
On NaCl(100)/Cu(111) an interface state band is observed that descends from
the surface-state band of the clean copper surface. This band exhibits a
Moire-pattern-induced one-dimensional band gap, which is accompanied by strong
standing-wave patterns, as revealed in low-temperature scanning tunneling
microscopy images. At NaCl island step edges, one can directly see the
refraction of these standing waves, which obey Snell's refraction law.Comment: 4 pages, 4 figure
Tunable magnetic properties of arrays of Fe(110) nanowires grown on kinetically-grooved W(110) self-organized templates
We report a detailed magnetic study of a new type of self-organized nanowires
disclosed briefly previously [B. Borca et al., Appl. Phys. Lett. 90, 142507
(2007)]. The templates, prepared on sapphire wafers in a kinetically-limited
regime, consist of uniaxially-grooved W(110) surfaces, with a lateral period
here tuned to 15nm. Fe deposition leads to the formation of (110) 7 nm-wide
wires located at the bottom of the grooves. The effect of capping layers (Mo,
Pd, Au, Al) and underlayers (Mo, W) on the magnetic anisotropy of the wires was
studied. Significant discrepancies with figures known for thin flat films are
evidenced and discussed in terms of step anisotropy and strain-dependent
surface anisotropy. Demagnetizing coeffcients of cylinders with a triangular
isosceles cross-section have also been calculated, to estimate the contribution
of dipolar anisotropy. Finally, the dependence of magnetic anisotropy with the
interface element was used to tune the blocking temperature of the wires, here
from 50K to 200 K
Quantum transport through STM-lifted single PTCDA molecules
Using a scanning tunneling microscope we have measured the quantum
conductance through a PTCDA molecule for different configurations of the
tip-molecule-surface junction. A peculiar conductance resonance arises at the
Fermi level for certain tip to surface distances. We have relaxed the molecular
junction coordinates and calculated transport by means of the Landauer/Keldysh
approach. The zero bias transmission calculated for fixed tip positions in
lateral dimensions but different tip substrate distances show a clear shift and
sharpening of the molecular chemisorption level on increasing the STM-surface
distance, in agreement with experiment.Comment: accepted for publication in Applied Physics
Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.
The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation
Atomic Hole Doping of Graphene
Graphene is an excellent candidate for the next generation of electronic
materials due to the strict two-dimensionality of its electronic structure as
well as the extremely high carrier mobility. A prerequisite for the development
of graphene based electronics is the reliable control of the type and density
of the charge carriers by external (gate) and internal (doping) means. While
gating has been successfully demonstrated for graphene flakes and epitaxial
graphene on silicon carbide, the development of reliable chemical doping
methods turns out to be a real challenge. In particular hole doping is an
unsolved issue. So far it has only been achieved with reactive molecular
adsorbates, which are largely incompatible with any device technology. Here we
show by angle-resolved photoemission spectroscopy that atomic doping of an
epitaxial graphene layer on a silicon carbide substrate with bismuth, antimony
or gold presents effective means of p-type doping. Not only is the atomic
doping the method of choice for the internal control of the carrier density. In
combination with the intrinsic n-type character of epitaxial graphene on SiC,
the charge carriers can be tuned from electrons to holes, without affecting the
conical band structure
Charge transport through single molecules, quantum dots, and quantum wires
We review recent progresses in the theoretical description of correlation and
quantum fluctuation phenomena in charge transport through single molecules,
quantum dots, and quantum wires. A variety of physical phenomena is addressed,
relating to co-tunneling, pair-tunneling, adiabatic quantum pumping, charge and
spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical
many-body methods to treat correlation effects, quantum fluctuations,
nonequilibrium physics, and the time evolution into the stationary state of
complex nanoelectronic systems.Comment: 48 pages, 14 figures, Topical Review for Nanotechnolog
TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz
The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich
nuclides with production rates sufficiently large for mass spectrometric and
laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as
well as a beam line for collinear laser spectroscopy are being installed.
Several new developments will ensure high sensitivity of the trap setup
enabling mass measurements even on a single ion. Besides neutron-rich fission
products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf
can be investigated for the first time with an off-line ion source. The data
provided by the mass measurements will be of interest for astrophysical
calculations on the rapid neutron-capture process as well as for tests of mass
models in the heavy-mass region. The laser spectroscopic measurements will
yield model-independent information on nuclear ground-state properties such as
nuclear moments and charge radii of neutron-rich nuclei of refractory elements
far from stability. This publication describes the experimental setup as well
as its present status.Comment: 20 pages, 17 figure
Brief Studies
The Need and The Meaning of a Philosophy of Christian Education
The Kingdom of God and Joh
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
- …
