41 research outputs found
Book Reviews
We develop a first-principles approach based on many-body perturbation theory to investigate the effects of the interaction between electrons and carrier plasmons on the electronic properties of highly doped semiconductors and oxides. Through the evaluation of the electron self-energy, we account simultaneously for electron-plasmon and electron-phonon coupling in theoretical calculations of angle-resolved photoemission spectra, electron linewidths, and relaxation times. We apply this methodology to electron-doped anatase TiO2 as an illustrative example. The simulated spectra indicate that electron-plasmon coupling in TiO2 underpins the formation of satellites at energies comparable to those of polaronic spectral features. At variance with phonons, however, the energy of plasmons and their spectral fingerprints depends strongly on the carrier concentration, revealing a complex interplay between plasmon and phonon satellites. The electron-plasmon interaction accounts for approximately 40% of the total electron-boson interaction strength, and it is key to improve the agreement with measured quasiparticle spectra
Electronic structure of few-layer black phosphorus from -ARPES
Black phosphorus (BP) stands out among two-dimensional (2D) semiconductors
because of its high mobility and thickness dependent direct band gap. However,
the quasiparticle band structure of ultrathin BP has remained inaccessible to
experiment thus far. Here we use a recently developed laser-based micro-focus
angle resolved photoemission (-ARPES) system to establish the electronic
structure of 2-9 layer BP from experiment. Our measurements unveil ladders of
anisotropic, quantized subbands at energies that deviate from the scaling
observed in conventional semiconductor quantum wells. We quantify the
anisotropy of the effective masses and determine universal tight-binding
parameters which provide an accurate description of the electronic structure
for all thicknesses.Comment: Supporting Information available upon reques
Many-body calculations of plasmon and phonon satellites in angle-resolved photoelectron spectra using the cumulant expansion approach
The interaction of electrons with crystal lattice vibrations (phonons) and
collective charge-density fluctuations (plasmons) influences profoundly the
spectral properties of solids revealed by photoemission spectroscopy
experiments. Photoemission satellites, for instance, are a prototypical example
of quantum emergent behavior that may result from the strong coupling of
electronic states to plasmons and phonons. The existence of these spectral
features has been verified over energy scales spanning several orders of
magnitude (from 50 meV to 15-20 eV) and for a broad class of compounds such as
simple metals, semiconductors, and highly-doped oxides. During the past few
years the cumulant expansion approach, alongside with the GW approximation and
the theory of electron-phonon and electron-plasmon coupling in solids, has
evolved into a predictive and quantitatively accurate approach for the
description of the spectral signatures of electron-boson coupling entirely from
first principles, and it has thus become the state-of-the-art theoretical tool
for the description of these phenomena. In this chapter we introduce the
fundamental concepts needed to interpret plasmon and phonon satellites in
photoelectron spectra, and we review recent progress on first-principles
calculations of these features using the cumulant expansion method
Statement of Foliar Fertilization Impact on Yield, Composition, and Oxidative Biomarkers in Rice
In rice crops, fertilization is a naturalized practice, although inefficient, that could be improved by applying foliar fertilization. Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are products of α-linolenic acid peroxidation, useful as biomarkers of oxidative degradation in higher plants. The objective was to determine the effect of the foliar fertilization on the concentration of PhytoPs and PhytoFs and its relationships with modifications of yield and quality of rice productions. It was described that the concentration of biomarkers of stress decreased with the application of foliar fertilization, being the response significantly different depending the genotypes and compound monitored. Moreover, fertilization did not modify significantly the parameters of yield (961.2 g m−2), 1000 whole-grain (21.2 g), and protein content (10.7% dry matter). Therefore, this is the first work that describes the effect of fertilization on PhytoPs and PhytoFs in rice genotypes and reinforces the capacity of these compounds as biomarkers to monitor specific abiotic stress, in this case, represented by nutritional stress.Facultad de Ciencias Agrarias y Forestale
Wannier90 as a community code: new features and applications
Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these Bloch states. In the past few years the development of Wannier90 has transitioned to a community-driven model; this has resulted in a number of new developments that have been recently released in Wannier90 v3.0. In this article we describe these new functionalities, that include the implementation of new features for wannierisation and disentanglement (symmetry-adapted Wannier functions, selectively-localised Wannier functions, selected columns of the density matrix) and the ability to calculate new properties (shift currents and Berry-curvature dipole, and a new interface to many-body perturbation theory); performance improvements, including parallelisation of the core code; enhancements in functionality (support for spinor-valued Wannier functions, more accurate methods to interpolate quantities in the Brillouin zone); improved usability (improved plotting routines, integration with high-throughput automation frameworks), as well as the implementation of modern software engineering practices (unit testing, continuous integration, and automatic source-code documentation). These new features, capabilities, and code development model aim to further sustain and expand the community uptake and range of applicability, that nowadays spans complex and accurate dielectric, electronic, magnetic, optical, topological and transport properties of materials.The WDG acknowledges financial support from the NCCR MARVEL of the Swiss National Science Foundation, the European Union’s Centre of Excellence E-CAM (Grant No. 676531), and the Thomas Young Centre for Theory and Simulation of Materials (Grant No. TYC-101).Peer reviewe
Advanced capabilities for materials modelling with Quantum ESPRESSO
Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software
Dimensional crossover in the carrier mobility of two-dimensional semiconductors: the case of InSe
Two-dimensional (2D) semiconductors are at the center of an intense research effort aimed at developing the next generation of flexible, transparent, and energy-efficient electronics. In these applications, the carrier mobility, that is the ability of electrons and holes to move rapidly in response to an external voltage, is a critical design parameter. Here, we show that the interlayer coupling between electronic wave functions in 2D semiconductors can be used to drastically alter carrier mobility and dynamics. We demonstrate this concept by performing state-of-the-art ab initio calculations for InSe, a prototypical 2D semiconductor that is attracting considerable attention, because of its exceptionally high electron mobility. We show that the electron mobility of InSe can be increased from 100 cm2 V-1 s-1 to 1000 cm2 V-1 s-1 by exploiting the dimensional crossover of the electronic density of states from two dimensions to three dimensions. By generalizing our results to the broader class of layered materials, we discover that dimensionality plays a universal role in the transport properties of 2D semiconductors
Carrier lifetimes and polaronic mass enhancement in the hybrid halide perovskite CH3NH3PbI3 from multiphonon Fröhlich coupling
We elucidate the nature of the electron-phonon interaction in the archetypal hybrid perovskite CH3NH3PbI3 using ab initio many-body calculations and an exactly solvable model. We demonstrate that electrons and holes near the band edges primarily interact with three distinct groups of longitudinal-optical vibrations, in order of importance: the stretching of the Pb—I bond, the bending of the Pb—I—Pb bonds, and the libration of the organic cations. These polar phonons induce ultrafast intraband carrier relaxation over timescales of 6–30 fs and yield polaron effective masses 28% heavier than the bare band masses. These findings allow us to rationalize previous experimental observations and provide a key to understanding carrier dynamics in halide perovskites.</p
Origin of low carrier mobilities in halide perovskites
Halide perovskites constitute a new class of semiconductors that hold promise for low-cost solar cells and optoelectronics. One key property of these materials is the electron mobility, which determines the average electron speed due to a driving electric field. Here we elucidate the atomic-scale mechanisms and theoretical limits of carrier mobilities in halide perovskites by performing a comparative analysis of the archetypal compound CH 3 NH 3 PbI 3 , its inorganic counterpart CsPbI 3 , and a classic semiconductor for light-emitting diodes, wurtzite GaN, using cutting-edge many-body ab initio calculations. We demonstrate that low-energy longitudinal-optical phonons associated with fluctuations of the Pb-I bonds ultimately limit the mobility to 80 cm 2 /(V s) at room temperature. By extending our analysis to a broad class of compounds, we identify a universal scaling law for the carrier mobility in halide perovskites, and we establish the design principles to realize high-mobility materials