299 research outputs found
Nonenzymatic lipid mediators, neuroprostanes, exert the antiarrhythmic properties of docosahexaenoic acid
postprin
Machine learning and marsquakes: a tool to predict atmospheric-seismic noise for the NASA InSight mission
Recommended from our members
An integrated bioinformatics analysis reveals divergent evolutionary pattern of oil biosynthesis in high- and low-oil plants
Seed oils provide a renewable source of food, biofuel and industrial raw materials that is important for humans. Although many genes and pathways for acyl-lipid metabolism have been identified, little is known about whether there is a specific mechanism for high-oil content in high-oil plants. Based on the distinct differences in seed oil content between four high-oil dicots (20~50%) and three low-oil grasses (<3%), comparative genome, transcriptome and differential expression analyses were used to investigate this mechanism. Among 4,051 dicot-specific soybean genes identified from 252,443 genes in the seven species, 54 genes were shown to directly participate in acyl-lipid metabolism, and 93 genes were found to be associated with acyl-lipid metabolism. Among the 93 dicot-specific genes, 42 and 27 genes, including CBM20-like SBDs and GPT2, participate in carbohydrate degradation and transport, respectively. 40 genes highly up-regulated during seed oil rapid accumulation period are mainly involved in initial fatty acid synthesis, triacylglyceride assembly and oil-body formation, for example, ACCase, PP, DGAT1, PDAT1, OLEs and STEROs, which were also found to be differentially expressed between high- and low-oil soybean accessions. Phylogenetic analysis revealed distinct differences of oleosin in patterns of gene duplication and loss between high-oil dicots and low-oil grasses. In addition, seed-specific GmGRF5, ABI5 and GmTZF4 were predicted to be candidate regulators in seed oil accumulation. This study facilitates future research on lipid biosynthesis and potential genetic improvement of seed oil content
Effects of treatment on IgE responses against parasite allergen-like proteins and immunit to reinfection in childhood schistosome and hookworm coinfections
Naturally occurring human immunity to both schistosomiasis and hookworm infection has been associated with IgE responses against parasite allergen-like proteins. Since the two helminths frequently coinfect the same individuals, there is growing advocacy for their concurrent treatment. However, both helminths are known to exert strong immunomodulatory effects; therefore, coinfected individuals could have immune responses different from those characteristically seen in monoinfected individuals. In this study, we measured changes in IgE, IgG1, and IgG4 responses to schistosome and hookworm antigens, including the allergen-like proteins Schistosoma mansoni tegumental-allergen-like 1 protein (SmTAL1), SmTAL2, and Necator americanus Ancylostoma-secreted protein-2 (Na-ASP-2), following concurrent treatment of schoolchildren coinfected withSchistosoma mansoni and hookworm. Antibody responses to schistosome egg (soluble egg antigen and SmTAL2) or somatic adult hookworm (AHW) antigens either decreased after treatment or were unchanged, whereas those to schistosome worm antigens (soluble worm antigen and SmTAL1) increased. The observed different effects of treatment likely reflect the different modes of drug action and sites of infection for these two helminths. Importantly, there was no evidence that the simultaneous treatment of coinfected children with praziquantel and albendazole affected schistosome- and hookworm-specific humoral responses differently from those characteristic of populations in which only one organism is endemic; schistosome- and hookworm-specific responses were not associated, and there was no evidence for cross-regulation. Posttreatment increases in the levels of IgE to schistosome worm antigens were associated with lower Schistosoma mansoni reinfection intensity, while no associations between humoral responses to AHW antigen and protection from hookworm reinfection were observed in this sample of school-aged children
Laboratory predictors of uphill cycling performance in trained cyclists
This study aimed to assess the relationship between an uphill time-trial (TT) performance and both aerobic and anaerobic parameters obtained from laboratory tests. Fifteen cyclists performed a Wingate anaerobic test, a graded exercise test (GXT) and a field-based 20-min TT with 2.7% mean gradient. After a 5-week non-supervised training period, 10 of them performed a second TT for analysis of pacing reproducibility. Stepwise multiple regressions demonstrated that 91% of TT mean power output variation (W kg-1) could be explained by peak oxygen uptake (ml kg-1.min-1) and the respiratory compensation point (W kg-1), with standardised beta coefficients of 0.64 and 0.39, respectively. The agreement between mean power output and power at respiratory compensation point showed a bias ± random error of 16.2 ± 51.8 W or 5.7 ± 19.7%. One-way repeated-measures analysis of variance revealed a significant effect of the time interval (123.1 ± 8.7; 97.8 ± 1.2 and 94.0 ± 7.2% of mean power output, for epochs 0-2, 2-18 and 18-20 min, respectively; P < 0.001), characterising a positive pacing profile. This study indicates that an uphill, 20-min TT-type performance is correlated to aerobic physiological GXT variables and that cyclists adopt reproducible pacing strategies when they are tested 5 weeks apart (coefficients of variation of 6.3; 1 and 4%, for 0-2, 2-18 and 18-20 min, respectively)
[omega]-Hydroxylation of Oleic Acid in Vicia sativa Microsomes (Inhibition by Substrate Analogs and Inactivation by Terminal Acetylenes)
Positive thyroid transcription factor 1 staining strongly correlates with survival of patients with adenocarcinoma of the lung
This study investigated the relation between positive thyroid transcription factor 1 (TTF1) staining and survival of patients affected by primary adenocarcinoma (ADC) of the lung. Pathological tissue from consecutive ADC patients was collected from 2002 to 2004. The anti-TTF1 antibody (8G7G3/1, dilution of 1/200) was used. Thyroid transcription factor 1 staining was assessed for each tumour as positive or negative. Probability of survival was estimated by Kaplan–Meier and difference tested by log-rank test. A Cox's regression multivariate analysis was carried out. In all, 106 patients were studied (66% male, 69% PS0–1, 83% with stage III or IV). Tumours expressed positive TTF1 staining in 66% of cases. Multivariate analysis demonstrated an independent lower risk of death for patients whose tumour expresses positive TTF1 staining (HR=0.51, 95% CI 0.30–0.85; P=0.01) and higher grade of differentiation (HR=0.40, 95% CI 0.24–0.68; P=0.001). In conclusion, positive TTF1 staining strongly and independently correlates with survival of patients with primary ADC of the lung
Gene evolution of epoxide hydrolases and recommended nomenclature
We have analyzed amino acid sequence relationships among soluble and microsomal epoxide hydrolases, haloacid dehalogenases, and a haloalkane dehalogenase. The amino-terminal residues (1-229) of mammalian soluble epoxide hydrolase are homologous to a haloacid dehalogenase. The carboxy-terminal residues (230-554) of mammalian soluble epoxide hydrolase are homologous to haloalkane dehalogenase, to plant soluble epoxide hydrolase, and to microsomal epoxide hydrolase. The shared identity between the haloacid and haloalkane dehalogenases does not indicate relatedness between these two types of dehalogenases. The amino-terminal and carboxy-terminal homologies of mammalian soluble epoxide hydrolase to the respective dehalogenases suggests that this epoxide hydrolase, but not the soluble epoxide hydrolase of plant or the microsomal epoxide hydrolase, derives from a gene fusion. The homology of microsomal to soluble epoxide hydrolase suggests they derive from a gene duplication, probably of an ancestral bacterial (epoxide) hydrolase gene. Based on homology to haloalkane dehalogenase, the catalytic residues for the soluble and microsomal epoxide hydrolases are predicted. A nomenclature system based on divergent molecular evolution is proposed for these epoxide hydrolases
Updating temperature and salinity mean values and trends in the Western Mediterranean: the RADMED project
Postprin
Autocorrelation of the Ground Vibrations Recorded by the SEIS-InSight Seismometer on Mars
Since early February 2019, the SEIS (Seismic Experiment for Interior Structure) seismometer deployed at the surface of Mars in the framework of the InSight mission has been continuously recording the ground motion at Elysium Planitia. In this study, we take advantage of this exceptional data set to put constraints on the crustal properties of Mars using seismic interferometry (SI). To carry out this task, we first examine the continuous records from the very broadband seismometer. Several deterministic sources of environmental noise are identified and specific preprocessing strategies are presented to mitigate their influence. Applying the principles of SI to the single-station configuration of InSight, we compute, for each Sol and each hour of the martian day, the diagonal elements of the time-domain correlation tensor of random ambient vibrations recorded by SEIS. A similar computation is performed on the diffuse waveforms generated by more than a hundred Marsquakes. A careful signal-to-noise ratio analysis and an inter-comparison between the two datasets suggest that the results from SI are most reliable in a narrow frequency band around 2.4 Hz, where an amplification of both ambient vibrations and seismic events is observed. The average autocorrelation functions (ACFs) contain well identifiable seismic arrivals, that are very consistent between the two datasets. Interpreting the vertical and horizontal ACFs as, respectively, the P- and S- seismic reflectivity below InSight, we propose a simple stratified velocity model of the crust, which is mostly compatible with previous results from receiver function analysis. Our results are discussed and compared to recent works from the literature.This study is InSight contribution number 164. The authors acknowledge both “Université Fédérale de Toulouse Midi Pyrénées” and the “Région Occitanie” for funding the PhD grant of Nicolas Compaire. The French authors acknowledge the French Space Agency CNES and ANR (ANR-14-CE36-0012-02 and ANR-19-CE31-0008-08) for funding the InSight Science analysis
- …
