1,326 research outputs found

    Learning to train neural networks for real-world control problems

    Get PDF
    Over the past three years, our group has concentrated on the application of neural network methods to the training of controllers for real-world systems. This presentation describes our approach, surveys what we have found to be important, mentions some contributions to the field, and shows some representative results. Topics discussed include: (1) executing model studies as rehearsal for experimental studies; (2) the importance of correct derivatives; (3) effective training with second-order (DEKF) methods; (4) the efficacy of time-lagged recurrent networks; (5) liberation from the tyranny of the control cycle using asynchronous truncated backpropagation through time; and (6) multistream training for robustness. Results from model studies of automotive idle speed control serve as examples for several of these topics

    In-situ Analysis of Laminated Composite Materials by X-ray Micro-Computed Tomography and Digital Volume Correlation

    Get PDF
    The complex mechanical behaviour of composite materials, due to internal heterogeneity and multi-layered composition impose deeper studies. This paper presents an experimental investigation technique to perform volume kinematic measurements in composite materials. The association of X-ray micro-computed tomography acquisitions and Digital Volume Correlation (DVC) technique allows the measurement of displacements and deformations in the whole volume of composite specimen. To elaborate the latter, composite fibres and epoxy resin are associated with metallic particles to create contrast during X-ray acquisition. A specific in situ loading device is presented for three-point bending tests, which enables the visualization of transverse shear effects in composite structures

    A new fireworm (Amphinomidae) from the Cretaceous of Lebanon identified from three-dimensionally preserved myoanatomy

    Get PDF
    © 2015 Parry et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Maternal Dietary Patterns are Associated With Risk of Neural Tube and Congenital Heart Defects

    Get PDF
    Studying empirically derived dietary patterns is useful in understanding dietary practice. We classified women by their dietary patterns using latent class analysis of 66 foods and studied the association of these patterns with neural tube defects (NTDs) and congenital heart defects (CHDs) in the US National Birth Defects Prevention Study (1997–2005). Logistic regression models used data from 1,047 with an NTD, 6,641 with a CHD, and 6,123 controls that were adjusted for maternal characteristics and tested the effect modification of multivitamin supplement use. Four latent dietary patterns were identified: prudent, Western, low-calorie Western, and Mexican. Among participants who did not use supplements, those in the Mexican, Western, and low-calorie Western classes were significantly more likely (odds ratios of 1.6, 1.5, and 1.4, respectively) to have offspring born with NTDs than were those in the prudent class after adjustment of for dietary folic acid intake. In contrast, among supplement users, there was no difference in the incidence of NTDs between classes. Associations between dietary class and CHD subgroups were not modified by supplement use except for tetralogy of Fallot; among supplement users, those in the Western class were twice as likely (95% confidence interval: 1.4, 2.8) as the prudent class to have offspring with tetralogy of Fallot. Women who adhered to a Western diet were 1.2 (95% confidence interval: 1.03, 1.35) times more likely to have an infant with septal heart defect than were women who adhered to a prudent diet. A prudent dietary pattern, even with folate fortification, may decrease the risk of NTDs and some heart defects

    Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer

    Get PDF
    The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O6-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA directed assembly of homo- and hetero-dimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template directed assembly of PNA modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels which may find use in the study of assembly processes in cells

    ALBIRA: A small animal PET/SPECT/CT imaging system

    Full text link
    Purpose: The authors have developed a trimodal PET/SPECT/CT scanner for small animal imaging. The gamma ray subsystems are based on monolithic crystals coupled to multianode photomultiplier tubes (MA-PMTs), while computed tomography (CT) comprises a commercially available microfocus x-ray tube and a CsI scintillator 2D pixelated flat panel x-ray detector. In this study the authors will report on the design and performance evaluation of the multimodal system. Methods: X-ray transmission measurements are performed based on cone-beam geometry. Individual projections were acquired by rotating the x-ray tube and the 2D flat panel detector, thus making possible a transaxial field of view (FOV) of roughly 80 mm in diameter and an axial FOV of 65 mm for the CT system. The single photon emission computed tomography (SPECT) component has a dual head detector geometry mounted on a rotating gantry. The distance between the SPECT module detectors can be varied in order to optimize specific user requirements, including variable FOV. The positron emission tomography (PET) system is made up of eight compact modules forming an octagon with an axial FOV of 40 mm and a transaxial FOV of 80 mm in diameter. The main CT image quality parameters (spatial resolution and uniformity) have been determined. In the case of the SPECT, the tomographic spatial resolution and system sensitivity have been evaluated with a99mTc solution using single-pinhole and multi-pinhole collimators. PET and SPECT images were reconstructed using three-dimensional (3D) maximum likelihood and ordered subset expectation maximization (MLEM and OSEM) algorithms developed by the authors, whereas the CT images were obtained using a 3D based FBP algorithm. Results: CT spatial resolution was 85μm while a uniformity of 2.7% was obtained for a water filled phantom at 45 kV. The SPECT spatial resolution was better than 0.8 mm measured with a Derenzo-like phantom for a FOV of 20 mm using a 1-mm pinhole aperture collimator. The full width at half-maximum PET radial spatial resolution at the center of the field of view was 1.55 mm. The SPECT system sensitivity for a FOV of 20 mm and 15% energy window was 700 cps/MBq (7.8 × 10−2%) using a multi-pinhole equipped with five apertures 1 mm in diameter, whereas the PET absolute sensitivity was 2% for a 350–650 keV energy window and a 5 ns timing window. Several animal images are also presented. Conclusions: The new small animal PET/SPECT/CT proposed here exhibits high performance, producing high-quality images suitable for studies with small animals. Monolithic design for PET and SPECT scintillator crystals reduces cost and complexity without significant performance degradation.This study was supported by the Spanish Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica (I+D+I) under Grant No. FIS2010-21216-CO2-01 and Valencian Local Government under Grant PROMETEO 2008/114. The authors also thank Brennan Holt for checking and correcting the text.Sánchez Martínez, F.; Orero Palomares, A.; Soriano Asensi, A.; Correcher Salvador, C.; Conde Castellanos, PE.; González Martínez, AJ.; Hernández Hernández, L.... (2013). ALBIRA: A small animal PET/SPECT/CT imaging system. Medical Physics. 40(5):5190601-5190611. https://doi.org/10.1118/1.4800798S5190601519061140

    Enhancing discrete-event simulation with big data analytics: a review

    Get PDF
    This article presents a literature review of the use of the OR technique of discrete-event simulation (DES) in conjunction with the big data analytics (BDA) approaches of data mining, machine learning, data farming, visual analytics, and process mining. The two areas are quite distinct. DES represents a mature OR tool using a graphical interface to produce an industry strength process modelling capability. The review reflects this and covers commercial off-the-shelf DES software used in an organisational setting. On the contrary the analytics techniques considered are in the domain of the data scientist and usually involve coding of algorithms to provide outputs derived from big data. Despite this divergence the review identifies a small but emerging literature of use-cases and from this a framework is derived for a DES development methodology that incorporates the use of these analytics techniques. The review finds scope for two new categories of simulation and analytics use: an enhanced capability for DES from the use of BDA at the main stages of the DES methodology as well as the use of DES in a data farming role to drive BDA techniques

    Early detection and surveillance of SARS-CoV-2 genomic variants in wastewater using COJAC

    Get PDF
    The continuing emergence of SARS-CoV-2 variants of concern and variants of interest emphasizes the need for early detection and epidemiological surveillance of novel variants. We used genomic sequencing of 122 wastewater samples from three locations in Switzerland to monitor the local spread of B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) variants of SARS-CoV-2 at a population level. We devised a bioinformatics method named COJAC (Co-Occurrence adJusted Analysis and Calling) that uses read pairs carrying multiple variant-specific signature mutations as a robust indicator of low-frequency variants. Application of COJAC revealed that a local outbreak of the Alpha variant in two Swiss cities was observable in wastewater up to 13 d before being first reported in clinical samples. We further confirmed the ability of COJAC to detect emerging variants early for the Delta variant by analysing an additional 1,339 wastewater samples. While sequencing data of single wastewater samples provide limited precision for the quantification of relative prevalence of a variant, we show that replicate and close-meshed longitudinal sequencing allow for robust estimation not only of the local prevalence but also of the transmission fitness advantage of any variant. We conclude that genomic sequencing and our computational analysis can provide population-level estimates of prevalence and fitness of emerging variants from wastewater samples earlier and on the basis of substantially fewer samples than from clinical samples. Our framework is being routinely used in large national projects in Switzerland and the UK

    Expectation maximization (EM) algorithms using polar symmetriesfor computed tomography(CT) image reconstruction

    Full text link
    We suggest a symmetric-polar pixellation scheme which makes possible a reduction of the computational cost for expectation maximization (EM) iterative algorithms. The proposed symmetric-polar pixellation allows us to deal with 3D images as a whole problem without dividing the 3D problem into 2D slices approach. Performance evaluation of each approach in terms of stability and image quality is presented. Exhaustive comparisons between all approaches were conducted in a 2D based image reconstruction model. From these 2D approaches, that showing the best performances were finally implemented and evaluated in a 3D based image reconstruction model. Comparison to 3D images reconstructed with FBP is also presented. Although the algorithm is presented in the context of computed tomography (CT) image reconstruction, it can be applied to any other tomographic technique as well, due to the fact that the only requirement is a scanning geometry involving measurements of an object under different projection angles. Real data have been acquired with a small animal (CT) scanner to verify the proposed mathematical description of the CT system.This work was supported by the Spanish Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica (I+D+I) under Grant, FIS2010-21216-CO2-01, Valencian Local Government under Grant Nos. PROMETEO 2008/114 and APOSTD/2010/012. The authors would like to thank Brennan Holt for checking and correcting the text.Rodríguez Álvarez, MJ.; Soriano Asensi, A.; Iborra Carreres, A.; Sánchez Martínez, F.; González Martínez, AJ.; Conde, P.; Hernández Hernández, L.... (2013). Expectation maximization (EM) algorithms using polar symmetriesfor computed tomography(CT) image reconstruction. Computers in Biology and Medicine. 43(8):1053-1061. https://doi.org/10.1016/j.compbiomed.2013.04.015S1053106143
    corecore