617 research outputs found

    Deep imaging survey of the environment of Alpha Centauri - II. CCD imaging with the NTT-SUSI2 camera

    Get PDF
    Context: The nearby pair of solar-type stars Alpha Centauri is a favorable target for an imaging search for extrasolar planets. Indications exist that the gravitational mass of Alpha Cen B could be higher than its modeled mass, the difference being consistent with a substellar companion of a few tens of Jupiter masses. However, Alpha Centauri usually appears in star catalogues surrounded by a large void area, due to the strong diffused light. Aims: We searched for faint comoving companions to Alpha Cen located at angular distances of the order of a few tens of arcseconds, up to 2-3 arcmin. As a secondary objective, we built a catalogue of the detected background sources. Methods: In order to complement our adaptive optics search at small angular distances (Paper I), we used atmosphere limited CCD imaging from the NTT-SUSI2 instrument in the Bessel V, R, I, and Z bands. Results: We present the results of our search in the form of a catalogue of the detected objects inside a 5.5 arcmin box around this star. A total of 4313 sources down to mV~24 and mI~22 were detected from this wide-field survey. We extracted the infrared photometry of part of the detected sources from archive images of the 2MASS survey (JHK bands). We investigate briefly the nature of the detected sources, many of them presenting extremely red color indices (V-K > 14). Conclusions: We did not detect any companion to Alpha Centauri between 100 and 300 AU, down to a maximum mass of ~15 times Jupiter. We also mostly exclude the presence of a companion more massive than 30 MJup between 50 and 100 AU.Comment: Accepted for publication as a Research Note in A&

    The nearby eclipsing stellar system delta Velorum - I. Origin of the infrared excess from VISIR and NACO imaging

    Get PDF
    - Context: The triple stellar system delta Vel system presents a significant infrared excess, whose origin is still being debated. A large infrared bow shock has been discovered using Spitzer/MIPS observations. Although it appears as a significant contributor to the measured IR excess, the possibility exists that a circumstellar IR excess is present around the stars of the system. - Aims: The objective of the present VISIR and NACO observations is to identify whether one of the stars of the delta Vel system presents a circumstellar photometric excess in the thermal IR domain and to quantify it. - Methods: We observed delta Vel using the imaging modes of the ESO/VLT instruments VISIR (in BURST mode) and NACO to resolve the A-B system (0.6" separation) and obtain the photometry of each star. We also obtained one NACO photometry epoch precisely at the primary (annular) eclipse of delta Vel Aa by Ab. - Results: Our photometric measurements with NACO (2.17 mic), complemented by the existing visible photometry allowed us to reconstruct the spectral energy distribution of the three stars. We then compared the VISIR photometry (8.6-12.8 mic) to the expected photospheric emission from the three stars at the corresponding wavelengths. - Conclusions: We can exclude the presence of a circumstellar thermal infrared excess around delta Vel A or B down to a few percent level. This supports the conclusions of Gaspar et al. (2008) that the IR excess of delta Vel has an interstellar origin, although a cold circumstellar disk could still be present. In addition, we derive the spectral types of the three stars Aa, Ab, and B (respectively A2IV, A4V and F8V), and we estimate the age of the system around 400-500 Myr.Comment: 8 pages, 9 figures, A&A, in pres

    Integrated optics for astronomical interferometry - VI. Coupling the light of the VLTI in K band

    Get PDF
    Our objective is to prove that integrated optics (IO) is not only a good concept for astronomical interferometry but also a working technique with high performance. We used the commissioning data obtained with the dedicated K-band integrated optics two-telescope beam combiner which now replaces the fiber coupler MONA in the VLTI/VINCI instrument. We characterize the behaviour of this IO device and compare its properties to other single mode beam combiner like the previously used MONA fiber coupler. The IO combiner provides a high optical throughput, a contrast of 89% with a night-to-night stability of a few percent. Even if a dispersive phase is present, we show that it does not bias the measured Fourier visibility estimate. An upper limit of 0.005 for the cross-talk between linear polarization states has been measured. We take advantage of the intrinsic contrast stability to test a new astronomical prodecure for calibrating diameters of simple stars by simultaneously fitting the instrumental contrast and the apparent stellar diameters. This method reaches an accuracy with diameter errors of the order of previous ones but without the need of an already known calibrator. These results are an important step of integrated optics and paves the road to incoming imaging interferometer projects

    Coronal activity cycles in nearby G and K stars - XMM-Newton monitoring of 61 Cygni and Alpha Centauri

    Full text link
    We use X-ray observations of the nearby binaries 61 Cyg A/B (K5V and K7V) and Alpha Cen A/B (G2V and K1V) to study the long-term evolution of magnetic activity in weakly to moderately active G + K dwarfs over nearly a decade. Specifically we search for X-ray activity cycles and related coronal changes and compare them to the solar behavior. For 61 Cyg A we find a regular coronal activity cycle analog to its 7.3 yr chromospheric cycle. The X-ray brightness variations are with a factor of three significantly lower than on the Sun, yet the changes of coronal properties resemble the solar behavior with larger variations occurring in the respective hotter plasma components. 61 Cyg B does not show a clear cyclic coronal trend so far, but the X-ray data matches the more irregular chromospheric cycle. Both Alpha Cen stars exhibit significant long-term X-ray variability. Alpha Cen A shows indications for cyclic variability of an order of magnitude with a period of about 12-15 years; the Alpha Cen B data suggests an X-ray cycle with an amplitude of about six to eight and a period of 8-9 years. The sample stars exhibit X-ray luminosities ranging between Lx < 1x10^26 - 3x10^27 erg s^-1 in the 0.2-2.0 keV band and have coronae dominated by cool plasma with variable average temperatures of around 1.0-2.5 MK. We find that coronal activity cycles are apparently a common phenomenon in older, slowly rotating G and K stars. The spectral changes of the coronal X-ray emission over the cycles are solar-like in all studied targets.Comment: 11 pages, 9 figures, accepted by Astronomy and Astrophysic

    VINCI / VLTI observations of Main Sequence stars

    Full text link
    Main Sequence (MS) stars are by far the most numerous class in the Universe. They are often somewhat neglected as they are relatively quiet objects (but exceptions exist), though they bear testimony of the past and future of our Sun. An important characteristic of the MS stars, particularly the solar-type ones, is that they host the large majority of the known extrasolar planets. Moreover, at the bottom of the MS, the red M dwarfs pave the way to understanding the physics of brown dwarfs and giant planets. We have measured very precise angular diameters from recent VINCI/VLTI interferometric observations of a number of MS stars in the K band, with spectral types between A1V and M5.5V. They already cover a wide range of effective temperatures and radii. Combined with precise Hipparcos parallaxes, photometry, spectroscopy as well as the asteroseismic information available for some of these stars, the angular diameters put strong constraints on the detailed models of these stars, and therefore on the physical processes at play.Comment: 5 pages, 3 figures. To appear in the Proceedings of IAU Symposium 219, "Stars as Suns", Editors A. Benz & A. Dupree, Astronomical Society of the Pacifi

    VLTI/VINCI observations of the nucleus of NGC 1068 using the adaptive optics system MACAO

    Full text link
    We present the first near-infrared K-band long-baseline interferometric measurement of the prototype Seyfert 2 galaxy NGC 1068 with resolution lambda/B \~ 10 mas obtained with the Very Large Telescope Interferometer (VLTI) and the two 8.2m Unit Telescopes UT2 and UT3. The adaptive optics system MACAO was employed to deliver wavefront-corrected beams to the K-band commissioning instrument VINCI. A squared visibility amplitude of 16.3 +/- 4.3 % was measured for NGC 1068 at a sky-projected baseline length of 45.8 m and azimuth angle 44.9 deg. This value corresponds to a FWHM of the K-band intensity distribution of 5.0 +/- 0.5 mas (0.4 +/- 0.04 pc) at the distance of NGC 1068) if it consists of a single Gaussian component. Taking into account K-band speckle interferometry observations (Wittkowski et al. 1998; Weinberger et al. 1999; Weigelt et al. 2004), we favor a multi-component model for the intensity distribution where a part of the flux originates from scales clearly smaller than about 5 mas (<0.4 pc), and another part of the flux from larger scales. The K-band emission from the small (< 5 mas) scales might arise from substructure of the dusty nuclear torus, or directly from the central accretion flow viewed through only moderate extinction.Comment: Accepted for publication in Astronomy and Astrophysics Letter

    VLTI/PIONIER images the Achernar disk swell

    Full text link
    Context. The mechanism of disk formation around fast-rotating Be stars is not well understood. In particular, it is not clear which mechanisms operate, in addition to fast rotation, to produce the observed variable ejection of matter. The star Achernar is a privileged laboratory to probe these additional mechanisms because it is close, presents B-Be phase variations on timescales ranging from 6 yr to 15 yr, a companion star was discovered around it, and probably presents a polar wind or jet. Aims. Despite all these previous studies, the disk around Achernar was never directly imaged. Therefore we seek to produce an image of the photosphere and close environment of the star. Methods. We used infrared long-baseline interferometry with the PIONIER/VLTI instrument to produce reconstructed images of the photosphere and close environment of the star over four years of observations. To study the disk formation, we compared the observations and reconstructed images to previously computed models of both the stellar photosphere alone (normal B phase) and the star presenting a circumstellar disk (Be phase). Results. The observations taken in 2011 and 2012, during the quiescent phase of Achernar, do not exhibit a disk at the detection limit of the instrument. In 2014, on the other hand, a disk was already formed and our reconstructed image reveals an extended H-band continuum excess flux. Our results from interferometric imaging are also supported by several H-alpha line profiles showing that Achernar started an emission-line phase sometime in the beginning of 2013. The analysis of our reconstructed images shows that the 2014 near-IR flux extends to 1.7 - 2.3 equatorial radii. Our model-independent size estimation of the H-band continuum contribution is compatible with the presence of a circumstellar disk, which is in good agreement with predictions from Be-disk models

    Optoelectronic comb generation and cross-injection locking of photonic integrated circuit for millimetre-wave generation

    Get PDF
    We demonstrate how a monolithically integrated heterodyne source was used for a 33.6 GHz signal generation using an optical solution by a combination of cross-optical injection locking inside the chip and electrical injection locking at the RF signal 7th sub-harmonic

    Flares and variability from Sagittarius A*: five nights of simultaneous multi-wavelength observations

    Get PDF
    Aims. We report on simultaneous observations and modeling of mid-infrared (MIR), near-infrared (NIR), and submillimeter (submm) emission of the source Sgr A* associated with the supermassive black hole at the center of our Galaxy. Our goal was to monitor the activity of Sgr A* at different wavelengths in order to constrain the emitting processes and gain insight into the nature of the close environment of Sgr A*. Methods. We used the MIR instrument VISIR in the BURST imaging mode, the adaptive optics assisted NIR camera NACO, and the sub-mm antenna APEX to monitor Sgr A* over several nights in July 2007. Results. The observations reveal remarkable variability in the NIR and sub-mm during the five nights of observation. No source was detected in the MIR, but we derived the lowest upper limit for a flare at 8.59 microns (22.4 mJy with A_8.59mu = 1.6+/- 0.5). This observational constraint makes us discard the observed NIR emission as coming from a thermal component emitting at sub-mm frequencies. Moreover, comparison of the sub-mm and NIR variability shows that the highest NIR fluxes (flares) are coincident with the lowest sub-mm levels of our five-night campaign involving three flares. We explain this behavior by a loss of electrons to the system and/or by a decrease in the magnetic field, as might conceivably occur in scenarios involving fast outflows and/or magnetic reconnection.Comment: 10 pages, 7 figures, published in A&
    corecore