478 research outputs found

    320g Ionization-Heat Cryogenic Detector for Dark Matter Search in the EDELWEISS Experiment

    Full text link
    The EDELWEISS experiment used in 2001 a 320g heat-and-ionization cryogenic Ge detector operated in a low-background environment in the Laboratoire Souterrain de Modane for direct WIMP detection. This detector presents an increase of more than 4 times the mass of previous detectors. Calibrations of this detector are used to determine its energy resolution and fiducial volume, and to optimize the detector design for the 1kg phase of the EDELWEISS-I experiment. Analysis of the calibrations and characteristics of a first series of 320g-detectors are presented.Comment: 4 pages, 3 figure

    High Resolution Micro-Pirani Pressure Sensor Gauge with Transient Response Processing

    No full text
    International audienceA micro-Pirani pressure sensor which acts as a pressure dependent thermo-resistance gauge is traditionally exploited using a steady state resistance measurement. However any signal variation occurs over a constant voltage bias due to the initial resistance of the device which affects the sensor's sensitivity. Our work shows for the first time an experimental investigation of a micro-Pirani gauge based on its dynamical behavior when heated by a current step. Such a processing does magnify the pressure dependence of the gauge's signal in eliminating the initial resistance influences on the measurement. Furthermore, a first order low pass filter step response identification of the experimental transient signal strongly reduces the thermal noise influence on the measurement. The heating step, the recording of the time dependent signal and its post-processing can be easily achieved by a small-size controller. The proposed system provides a substantial enhancement of the micro-Pirani pressure sensor performance

    A piecewise-linear reduced-order model of squeeze-film damping for deformable structures including large displacement effects

    Full text link
    This paper presents a reduced-order model for the Reynolds equation for deformable structure and large displacements. It is based on the model established in [11] which is piece-wise linearized using two different methods. The advantages and drawbacks of each method are pointed out. The pull-in time of a microswitch is determined and compared to experimental and other simulation data.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    IgG 3 + B cells are associated with the development of multiple sclerosis

    Get PDF
    Objectives Disease‐modifying therapies (DMTs) targeting B cells are amongst the most effective for preventing multiple sclerosis (MS) progression. IgG3 antibodies and their uncharacterised B‐cell clones are predicted to play a pathogenic role in MS. Identifying subsets of IgG3+ B cells involved in MS progression could improve diagnosis, could inform timely disease intervention and may lead to new DMTs that target B cells more specifically. Methods We designed a 31‐parameter B‐cell‐focused mass cytometry panel to interrogate the role of peripheral blood IgG3+ B cells in MS progression of two different patient cohorts: one to investigate the B‐cell subsets involved in conversion from clinically isolated syndrome (CIS) to MS; and another to compare MS patients with inactive or active stages of disease. Each independent cohort included a group of non‐MS controls. Results Nine distinct CD20+IgD−IgG3+ B‐cell subsets were identified. Significant changes in the proportion of CD21+CD24+CD27−CD38− and CD27+CD38hiCD71hi memory B‐cell subsets correlated with changes in serum IgG3 levels and time to conversion from CIS to MS. The same CD38− double‐negative B‐cell subset was significantly elevated in MS patients with active forms of the disease. A third CD21+CD24+CD27+CD38− subset was elevated in patients with active MS, whilst narrowband UVB significantly reduced the proportion of this switched‐memory B‐cell subset. Conclusion We have identified previously uncharacterised subsets of IgG3+ B cells and shown them to correlate with autoimmune attacks on the central nervous system (CNS). These results highlight the potential for therapies that specifically target IgG3+ B cells to impact MS progression

    KSHV LANA acetylation-selective acidic domain reader sequence mediates virus persistence

    Get PDF
    Viruses modulate biochemical cellular pathways to permit infection. A recently described mechanism mediates selective protein interactions between acidic domain readers and unacetylated, lysine-rich regions, opposite of bromodomain function. Kaposi®s sarcoma (KS)-associated herpesvirus (KSHV) is tightly linked with KS, primary effusion lymphoma, and multicentric Castleman’s disease. KSHV latently infects cells, and its genome persists as a multicopy, extrachromosomal episome. During latency, KSHV expresses a small subset of genes, including the latency-associated nuclear antigen (LANA), which mediates viral episome persistence. Here we show that LANA contains two tandem, partially overlapping, acidic domain sequences homologous to the SET oncoprotein acidic domain reader. This domain selectively interacts with unacetylated p53, as evidenced by reduced LANA interaction after overexpression of CBP, which acetylates p53, or with an acetylation mimicking carboxyl-terminal domain p53 mutant. Conversely, the interaction of LANA with an acetylation-deficient p53 mutant is enhanced. Significantly, KSHV LANA mutants lacking the acidic domain reader sequence are deficient for establishment of latency and persistent infection. This deficiency was confirmed under physiological conditions, on infection of mice with a murine gammaherpesvirus 68 chimera expressing LANA, where the virus was highly deficient in establishing latent infection in germinal center B cells. Therefore, LANA’s acidic domain reader is critical for viral latency. These results implicate an acetylation-dependent mechanism mediating KSHV persistence and expand the role of acidic domain readers.info:eu-repo/semantics/publishedVersio

    A search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors

    Full text link
    We report on a search for low-energy (E < 20 keV) WIMP-induced nuclear recoils using data collected in 2009 - 2010 by EDELWEISS from four germanium detectors equipped with thermal sensors and an electrode design (ID) which allows to efficiently reject several sources of background. The data indicate no evidence for an exponential distribution of low-energy nuclear recoils that could be attributed to WIMP elastic scattering after an exposure of 113 kg.d. For WIMPs of mass 10 GeV, the observation of one event in the WIMP search region results in a 90% CL limit of 1.0x10^-5 pb on the spin-independent WIMP-nucleon scattering cross-section, which constrains the parameter space associated with the findings reported by the CoGeNT, DAMA and CRESST experiments.Comment: PRD rapid communication accepte

    Event categories in the EDELWEISS WIMP search experiment

    Get PDF
    Four categories of events have been identified in the EDELWEISS-I dark matter experiment using germanium cryogenic detectors measuring simultaneously charge and heat signals. These categories of events are interpreted as electron and nuclear interactions occurring in the volume of the detector, and electron and nuclear interactions occurring close to the surface of the detectors(10-20 mu-m of the surface). We discuss the hypothesis that low energy surface nuclear recoils,which seem to have been unnoticed by previous WIMP searches, may provide an interpretation of the anomalous events recorded by the UKDMC and Saclay NaI experiments. The present analysis points to the necessity of taking into account surface nuclear and electron recoil interactions for a reliable estimate of background rejection factors.Comment: 11 pages, submitted to Phys. Lett.

    Identification of backgrounds in the EDELWEISS-I dark matter search experiment

    Get PDF
    This paper presents our interpretation and understanding of the different backgrounds in the EDELWEISS-I data sets. We analyze in detail the several populations observed, which include gammas, alphas, neutrons, thermal sensor events and surface events, and try to combine all data sets to provide a coherent picture of the nature and localisation of the background sources. In light of this interpretation, we draw conclusions regarding the background suppression scheme for the EDELWEISS-II phase

    Measurement of the response of heat-and-ionization germanium detectors to nuclear recoils

    Get PDF
    The heat quenching factor Q' (the ratio of the heat signals produced by nuclear and electron recoils of equal energy) of the heat-and-ionization germanium bolometers used by the EDELWEISS collaboration has been measured. It is explained how this factor affects the energy scale and the effective quenching factor observed in calibrations with neutron sources. This effective quenching effect is found to be equal to Q/Q', where Q is the quenching factor of the ionization yield. To measure Q', a precise EDELWEISS measurement of Q/Q' is combined with values of Q obtained from a review of all available measurements of this quantity in tagged neutron beam experiments. The systematic uncertainties associated with this method to evaluate Q' are discussed in detail. For recoil energies between 20 and 100 keV, the resulting heat quenching factor is Q' = 0.91+-0.03+-0.04, where the two errors are the contributions from the Q and Q/Q' measurements, respectively. The present compilation of Q values and evaluation of Q' represent one of the most precise determinations of the absolute energy scale for any detector used in direct searches for dark matter.Comment: 28 pages, 7 figures. Submitted to Phys. Rev.
    • 

    corecore