219 research outputs found

    Formal women-only networks: literature review and propositions

    Full text link
    © 2017, © Emerald Publishing Limited. Purpose: The purpose of this paper is to review the emerging literature on formal women-only business networks and outline propositions to develop this under-theorised area of knowledge and stimulate future research. Design/methodology/approach: The authors review the existing literature on formal internal and external women-only networks and use the broader social capital and network literature to frame their arguments and develop propositions. Findings: Propositions are developed regarding how both internal and external formal women-only business networks can be of value for members, firms/organisations and the wider social group of women in business. Research limitations/implications: The authors focus on the distinction between external and internal formal women-only networks while also acknowledging the broader diversity that can characterise such networks. Their review provides the reader with an insight into the state of the art and a set of propositions that present opportunities for future research. Practical implications: The paper provides insights into how women in business, organisations and wider society can leverage value from both internal and external formal women-only business networks. Social implications: The paper contributes to research showing that the social structure of interactions and context can impact women’s standing in the workplace. Originality/value: The paper sheds light on the under-studied and under-theorised phenomenon of formal women-only business networks. Beyond the individual member level, the authors suggest that such networks can be of value for organisations and the wider social group of women in management and leadership positions

    Granular Pressure and the Thickness of a Layer Jamming on a Rough Incline

    Full text link
    Dense granular media have a compaction between the random loose and random close packings. For these dense media the concept of a granular pressure depending on compaction is not unanimously accepted because they are often in a "frozen" state which prevents them to explore all their possible microstates, a necessary condition for defining a pressure and a compressibility unambiguously. While periodic tapping or cyclic fluidization have already being used for that exploration, we here suggest that a succession of flowing states with velocities slowly decreasing down to zero can also be used for that purpose. And we propose to deduce the pressure in \emph{dense and flowing} granular media from experiments measuring the thickness of the granular layer that remains on a rough incline just after the flow has stopped.Comment: 10 pages, 2 figure

    Memory effects in classical and quantum mean-field disordered models

    Full text link
    We apply the Kovacs experimental protocol to classical and quantum p-spin models. We show that these models have memory effects as those observed experimentally in super-cooled polymer melts. We discuss our results in connection to other classical models that capture memory effects. We propose that a similar protocol applied to quantum glassy systems might be useful to understand their dynamics.Comment: 24 pages, 12 figure

    Large droplet impact on water layers

    Get PDF
    The impact of large droplets onto an otherwise undisturbed layer of water is considered. The work, which is motivated primarily with regard to aircraft icing, is to try and help understand the role of splashing on the formation of ice on a wing, in particular for large droplets where splash appears, to have a significant effect. Analytical and numerical approaches are used to investigate a single droplet impact onto a water layer. The flow for small times after impact is determined analytically, for both direct and oblique impacts. The impact is also examined numerically using the volume of fluid (VOF) method. At small times there are promising comparisons between the numerical results, the analytical solution and experimental work capturing the ejector sheet. At larger times there is qualitative agreement with experiments and related simulations. Various cases are considered, varying the droplet size to layer depth ratio, including surface roughness, droplet distortion and air effects. The amount of fluid splashed by such an impact is examined and is found to increase with droplet size and to be significantly influenced by surface roughness. The makeup of the splash is also considered, tracking the incoming fluid, and the splash is found to consist mostly of fluid originating in the layer

    Long range correlations in the non-equilibrium quantum relaxation of a spin chain

    Full text link
    We consider the non-stationary quantum relaxation of the Ising spin chain in a transverse field of strength h. Starting from a homogeneously magnetized initial state the system approaches a stationary state by a process possessing quasi long range correlations in time and space, independent of the value of hh. In particular the system exhibits aging (or lack of time translational invariance on intermediate time scales) although no indications of coarsening are present.Comment: 4 pages RevTeX, 2 eps-figures include

    Coexisting ordinary elasticity and superfluidity in a model of defect-free supersolid

    Full text link
    We present the mechanics of a model of supersolid in the frame of the Gross-Pitaevskii equation at T=0KT=0K that do not require defects nor vacancies. A set of coupled nonlinear partial differential equations plus boundary conditions is derived. The mechanical equilibrium is studied under external constrains as steady rotation or external stress. Our model displays a paradoxical behavior: the existence of a non classical rotational inertia fraction in the limit of small rotation speed and no superflow under small (but finite) stress nor external force. The only matter flow for finite stress is due to plasticity.Comment: 6 pages, 2 figure

    Response properties in a model for granular matter

    Full text link
    We investigate the response properties of granular media in the framework of the so-called {\em Random Tetris Model}. We monitor, for different driving procedures, several quantities: the evolution of the density and of the density profiles, the ageing properties through the two-times correlation functions and the two-times mean-square distance between the potential energies, the response function defined in terms of the difference in the potential energies of two replica driven in two slightly different ways. We focus in particular on the role played by the spatial inhomogeneities (structures) spontaneously emerging during the compaction process, the history of the sample and the driving procedure. It turns out that none of these ingredients can be neglected for the correct interpretation of the experimental or numerical data. We discuss the problem of the optimization of the compaction process and we comment on the validity of our results for the description of granular materials in a thermodynamic framework.Comment: 22 pages, 35 eps files (21 figures

    Numerical simulation of spray coalescence in an eulerian framework : direct quadrature method of moments and multi-fluid method

    Full text link
    The scope of the present study is Eulerian modeling and simulation of polydisperse liquid sprays undergoing droplet coalescence and evaporation. The fundamental mathematical description is the Williams spray equation governing the joint number density function f(v, u; x, t) of droplet volume and velocity. Eulerian multi-fluid models have already been rigorously derived from this equation in Laurent et al. (2004). The first key feature of the paper is the application of direct quadrature method of moments (DQMOM) introduced by Marchisio and Fox (2005) to the Williams spray equation. Both the multi-fluid method and DQMOM yield systems of Eulerian conservation equations with complicated interaction terms representing coalescence. In order to validate and compare these approaches, the chosen configuration is a self-similar 2D axisymmetrical decelerating nozzle with sprays having various size distributions, ranging from smooth ones up to Dirac delta functions. The second key feature of the paper is a thorough comparison of the two approaches for various test-cases to a reference solution obtained through a classical stochastic Lagrangian solver. Both Eulerian models prove to describe adequately spray coalescence and yield a very interesting alternative to the Lagrangian solver
    corecore