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Abstract
The impact of large droplets onto an otherwise
undisturbed layer of water is considered. The
work, which is motivated primarily with regard
to aircraft icing, is to try and help understand the
role of splashing on the formation of ice on a wing,
in particular for large droplets where splash ap-
pears to have a significant effect. Analytical and
numerical approaches are used to investigate a sin-
gle droplet impact onto a water layer. The flow
for small times after impact is determined ana-
lytically, for both direct and oblique impacts. The
impact is also examined numerically using the vol-
ume of fluid (VOF) method. At small times there
are promising comparisons between the numerical
results, the analytical solution and experimental
work capturing the ejector sheet. At larger times
there is qualitative agreement with experiments
and related simulations. Various cases are consid-
ered, varying the droplet size to layer depth ratio,
including surface roughness, droplet distortion and
air effects. The amount of fluid splashed by such
an impact is examined and is found to increase
with droplet size and to be significantly influenced
by surface roughness. The makeup of the splash is
also considered, tracking the incoming fluid, and
the splash is found to consist mostly of fluid orig-
inating in the layer.

Introduction
The high-speed impact of a single water droplet
onto a previously undisturbed layer of water has a
range of applications for example in the chocolate,
spray-coating and aeronautics industries but in
particular with regard to aircraft icing. For larger
droplets splashing is thought to have a consider-
able influence on the amount of water collected
on an aerofoil and therefore a great effect on the
shape and quantity of ice produced. Despite this
physical importance there has been relatively little
previous work on droplet impact at high Reynolds
number. Early interest in splashing and impact
problems appeared in Worthington1 whose book
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includes many images of splashing after either a
droplet or a solid sphere impacts upon a fluid
layer. To date, there has been relatively little pre-
vious direct theoretical input and suitable physical
modeling on droplet impact, in particular concern-
ing mass and consequent heat transfer and the
relationship between input and rebound droplets.
However, much work has been done on related as-
pects both analytically, for example Korobkin and
Pukhnachov,2 Howison et al.3 who consider solu-
tions at small times after impact (mostly for solid-
water impacts), and numerically such as Weiss and
Yarin4 who use a Lagrangian-type approach to
examine an inviscid droplet impact numerically.
Much work has been done by Josserand and Za-
leski5 and references therein who have developed
powerful three-dimensional techniques for captur-
ing droplet impact but tend to examine impacts
with Reynolds numbers one or two orders of mag-
nitude less than is typical in an icing context. The
motivation of the current work is to help to en-
hance the understanding of the influence of splash-
ing on the formation of ice on a wing, in particular
for super-cooled large droplets where splash is be-
lieved to have a significant effect.
Given that experiments isolating single droplet im-
pacts and measuring overall splashed volume are
difficult to perform, it seems desirable to develop
a mathematical model which can describe the pro-
cess and help guide predictions of mass loss due to
splashing. Our approach is to start with a simple
model, initially neglecting viscosity (the typical
Reynolds number is large in the current practical
regime, Re ∼ O(105)), neglecting surface tension
(high Weber number, We ∼ O(105)), and neglect-
ing the influence of air and pre-existing flow in
order to concentrate on trends in the splashed
water as the droplet size to layer depth ratio
changes. The idea is to then include other relevant
physical effects subsequently, such as those men-
tioned above as well as ice-surface roughness, air-
cushioning, compressibility and oblique impacts.
Analytical and computational approaches are used
to investigate a single droplet impact onto a wa-
ter layer. The flow for small times after impact
is determined analytically, for direct and oblique
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impact and for very shallow layer depths. The im-
pact is also examined numerically using the VOF
(volume of fluid) method, initially treating the
fluid as inviscid and incompressible. At small
times there are promising comparisons with the
analytical solution and with experimental work
capturing the ejecta sheet. At larger times there is
qualitative agreement with experiments and with
related simulations.
The method is used to tackle various cases, such
as altering the layer depth to droplet diameter ra-
tio, the influence of surface tension and oblique
impact, focusing on their effects on the form of
splash produced, geometry of the crown formed
and make-up of the ejected droplets. In partic-
ular the amount of rebounded fluid is examined.
Although thermal effects are not included in the
current work emphasis is also placed upon the ex-
change of fluid, tracking the pre-existing (in prac-
tice warmer) layer fluid and the (colder) incoming
droplet fluid and considering the proportions of
each in the splash. This exchange can have a sub-
stantial influence on the overall temperature of the
water layer. Again the presence of an ice shape
beneath the water layer is modelled and its effects
on the rebound and the constituents of the ejected
fluid are explored. Other aspects include the in-
fluence of an air layer, in particular pre-impact air
cushioning and pre-existing airflow, and the influ-
ence of viscosity and compressibility.
In the first instance, then, we consider a sin-
gle droplet impacting directly upon an other-
wise undisturbed layer of water. We treat the
behaviour as inviscid and water-only as a first
step. The basic set-up is shown in figure 1. The
Cartesian coordinates x,y, corresponding veloc-
ity components u, v and pressure p used here
are non-dimensionalized with respect to a typ-
ical layer depth HD (or typical droplet diame-
ter DD) and incoming droplet velocity vD. The
Reynolds number Re ≡ vDHD/νD is large, where
νD is the kinematic viscosity of the fluid. Val-
ues for a typical icing situation are of the order
vD ∼ 100m/s, HD ∼ 30µm and droplet diam-
eters ranging from DD ∼ 40µm − 400µm for the
large droplets of interest here, although conditions
can vary dramatically through different stages and
types of icing. The governing equations are the
non-dimensionalized, two-dimensional, unsteady
Navier-Stokes equations, namely

ux + vy = 0, (1)

ut + uux + vuy = −px +
1

Re
∇2u, (2)

vt + uvx + vvy = −py +
1

Re
∇2v; (3)

however we shall mostly consider inviscid flows in
the current paper and so the viscous terms on the

right-hand sides of (2) and (3) will be assumed
negligible. We proceed by developing a mathe-
matical solution for small times after impact and
use this either as a starting point for a numerical
scheme to consider O(1) times or as a valida-
tion on a numerical scheme that can handle the
change in topology as the two distinct bodies of
fluid (droplet and layer) coalesce and become one.
This paper outlines the small-time post-impact so-
lution, describes the numerical scheme used for
resolving the entire droplet impact at O(1) times
and presents samples of the trends and results.

D

H

v = −1

Fig. 1 The basic setup. A droplet of diameter
D with incoming normalised velocity v = −1
impacts upon a layer of depth H.

The numerical method
The numerical method we have adopted is a vol-
ume of fluid (VOF) approach. One of the major
difficulties with solving the current problem nu-
merically is coping with the change in topology as
the droplet enters the layer and secondary droplets
are subsequently ejected. The VOF method can
in principle handle such surface reconnection and
breakup without any special treatment or catas-
trophic break down and so was thought suitable
for our use. The method was first introduced by
DeBar,6 Hirt and Nichols7 and Noh8 and has been
honed and improved upon since then by several
authors, for example Rider and Kothe,9 and in
particular by Gueyffier et al.10 who have applied it
to droplet impacts. We shall give a brief overview
here.
The main idea behind the VOF method is to track
the position of the interface by use of a function
F which represents the fraction of a given grid
cell that is filled with fluid. In other words we
introduce a function F which takes the values

F =





1, if cell is full of fluid
0, if cell is empty
or fraction of cell containing fluid

(4)

in each grid cell. As such we have 0 < F < 1 in
cells containing the free surface. This principle is
easily extended to two fluids by regarding F = 1
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as referring to fluid one and F = 0 representing
a cell full of fluid two. To ensure the free-surface
moves with the fluid the function F satisfies the
evolution equation

∂F

∂t
+ u.∇F = 0, (5)

where u is the velocity vector determined from
solving the flow in the main body of the fluid. In-
troducing F allows us to keep track of the free
surface and follow it in time but in doing so we
lose our knowledge of the exact position of the
free surface; this needs to be inferred from the
volume fractions. The reconstruction of the in-
terface can be performed in a variety of ways,
from the straightforward step-stair or SLIC meth-
ods,7 which forces the free-surface to align with
the x and y coordinates in each grid cell, to one
of various piecewise linear (PLIC) methods. The
latter constructs the interface by estimating the
normal vector to the actual free surface in each
grid cell and reconstructing the interface as the
straight line which, with the same normal, en-
closes the correct amount of fluid F . The PLIC
method gives much better resolution than the sim-
ple but relatively crude SLIC methods. See Rider
and Kothe9 for further details and comparisons.
Equations (1)-(3) govern the flow in the fluid,
subject to carefully applied boundary conditions
at the free surface, and is solved using the SIM-
PLE algorithm. Surface tension is included using
an approach called the continuous surface force
(CSF) method (see Scardvelli and Zaleski11 and
references therein for details). Throughout this
paper the Weber number is taken to be We = 105

which is fairly representative for practical icing sit-
uations.

Small-time solution
As discussed earlier we have developed a math-
ematical solution to the problem for small times
after impact which can be used either as a
check/validation or a starting point for the numer-
ical scheme. We shall give brief details here. If we
consider a region where x, y are O(t

1
2 ) around the

neck of the impact, expand the velocities, pressure
and free-surface as

[u, v, p, f ] ∼ [u, v, t−
1
2 p, tf ] (6)

and substitute into the governing Euler equations,
we obtain the Cauchy-Riemann equations for ftt

and −px (extended into the x − y plane) namely

f±
ttx = −p±xy, (7)

f±
tty = p±xx, (8)

where ± indicate quantities above (in the drop)
and below (in the layer). See figure 2.

Droplet

Layer

−a(t) a(t)

f+

f−

Fig. 2 Small time after impact problem in the
neck region of the impact. + denotes quantities
in the drop and − quantities in the layer.

These must be solved subject to the boundary con-
ditions

f+ ∼ x2− t, f− → 0 as |x| → ∞, y = 0, (9)

to match with the circular droplet impacting with
velocity −1 above and with the undisturbed hori-
zontal layer below in the outer O(1) region, and

p+ = p− = 0 for |x| > a(t), y = 0, (10)

on the free surface as surface tension has no ef-
fect to leading order on this scale. We also require
pressure continuity and identical free surface val-
ues in the middle, so that

p+ = p−, f+ = f−, for |x| < a(t). (11)

Finally the contact points x = ±a(t) where the
above and below free surfaces meet is also un-
known in advance and must be determined as part
of the solution.
The problem now is equivalent to a mixed bound-
ary condition one along the real axis and using a
complex analysis method leads to the solutions

f± = ±1
2
|x|(x2 − 2t)

1
2 +

x2

2
− t

2
, x2 > 2t,

(12)

f± =
x2

2
−

t

2
, x2 < 2t. (13)

As can be seen the contact points are found to
be at x = ±(2t)

1
2 . The small-time solution (12),

(13) is shown in figure 3 for two times; as time
increases the point in the neck region where the
free-surfaces meet moves outwards and upwards.
To smooth out the square-root behaviour exhib-
ited by (12) and the inverse root pressure p near
the contact point we must consider a smaller re-
gion where x −

√
2t = t

3
2 x̄. We omit the details

of this inner region here (see Purvis and Smith12

for a complete description. A similar problem
in a different, solid-water context has previously
been considered3). This subsequent region demon-
strates that the root behaviour is smoothed out
locally by an initial fast moving horizontal jet
forming in the neck region (e.g. where the three
lines meet in figure 3, for each case (a), (b) there).
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Fig. 3 The small time solution in the neck
region showing f+ and f− at (a) t=0.1 (solid)
and (b) t=0.9 (dashed).

The solution is valid for both direct impacts and
impacts at an angle. In the latter case the speed
of the contact point is generally large compared
to the horizontal velocity of the droplet and the
small-time solution is unaffected to leading order.

Computational results
Basic cases

We have applied the method described earlier to
a wide variety of cases, a snapshot of which we
include here. Figures 4-7 show the free-surface
shapes at four times (t=0.5,1.5,3.5,5.5) for differ-
ent values of droplet diameters D = 0.125, 0.5, 1, 4
with the layer depth remaining constant, H =
0.5. The droplet starts from a height above the
layer such that in each case impact occurs when
t=0.1. Notice the behaviour at small times re-
mains largely unchanged; after the initial impact
fast moving horizontal jets appear in the neck re-
gion. These then re-impinge and upward jets (the
birth of the corona or crown) appear from the
layer. This initial jetting is interesting and ap-
pears to be a continuation of the jetting found
in the small-time post-impact solution discussed
earlier. In fact the VOF method seems to capture
the small-time solution reasonably well and results
from the numerical method with a droplet started
before impact and one started from our small-time
solution are indistinguishable.
Further validation of the accuracy, at least quali-
tatively, comes from comparison with the exper-
imental work of Thoroddson.13 He examines a
single droplet impacting upon an undisturbed wa-
ter layer, and in particular visualises the ejecta
sheet that forms at small time. The comparisons
are favourable both with the jetting motion and
the reconnection with the layer.
Obviously the overall amount of splash produced
in a realistic icing situation is dependent upon
many factors excluded here, not least three-
dimensional effects and the presence of a strong
airflow in practice. In the present work however
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Fig. 4 Free-surface shapes at non-dimensional
times t=0.5,1.5,3.5,5.5 for a droplet diameter
to layer depth ratio D/H = 0.25.

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20
 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20
 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20

t = 0.5 t = 1.5

t = 3.5 t = 5.5

Fig. 5 Free-surface shapes at non-dimensional
times t=0.5,1.5,3.5,5.5 for a droplet diameter
to layer depth ratio D/H = 1.
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Fig. 6 Free-surface shapes at non-dimensional
times t=0.5,1.5,3.5,5.5 for a droplet diameter
to layer depth ratio D/H = 2.

we try to gain some appreciation for the over-
all trends in droplet splashing from our simplified
model. To do this we consider two measures of
the splash for various ratios of droplet diameter to
layer depth D/H , namely the maximum height
of the splash and the volume of the splash or
how much fluid is ejected above a given thresh-
old. The amount of splash is shown in figure 8. It
measures the sum of the function F , multiplied
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Fig. 7 Free-surface shapes at non-dimensional
times t=0.5,1.5,3.5,5.5 for a droplet diameter
to layer depth ratio D/H = 8.

by the size of the grid cell, in grid cells above
the original layer height which have positive ve-
locity v (so as to exclude fluid in the incoming
droplet). Notice that there is very little splash for
D/H < 0.5, the quantities then seem to plateau
to some extent before another change at roughly
D/H = 1.5. Figure 9 shows the maximum height
obtained by the splash, which is taken to be the
highest droplet rather than the top of the crown.
Once again similar trends appear with distinct
changes at around the same D/H ratios as in the
volume ejected case. These results certainly sug-
gest that for larger droplets splash becomes an
important consideration, with droplets that are
smaller than the layer depth producing little if any
splashing whearas the largest droplets examined
here are creating significant splashes. Of course in
reality not all fluid that gets splashed above the
free-surface will be ejected and not return. Over
longer times surface tension will pull much of the
crown back into the layer. Also in reality other
effects such as air flow will influence what escapes.
Ejected droplets may also escape completely or re-
impinge at another location on the layer (possibly
with another splash although the droplets then
will be small and so subsequent splashes might
be insignificant). However, the current model still
acts as a potentially useful guide to the overall
trends.

Make-up of the splash

Another issue we address is the origin of the fluid
contained in the splash. Was it originally in the
droplet or in the layer? This can be important in
terms of thermal effects where a typical droplet is
considerably cooler than the layer fluid and, de-
pending on the make-up of the splash, could have
a significant influence on the rate of ice formation
and overall layer temperature. Assuming there
is no mixing of the two fluids we can track the
two fluids separately using the VOF approach dis-
cussed earlier by using a function F1, defined as F
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Fig. 8 Amount of fluid ejected above the origi-
nal layer against D/H ratio at non-dimensional
time t=0.5.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  1  2  3  4  5  6  7  8

Fig. 9 Maximum height attained by fluid
ejected above the original layer against D/H
ratio at non-dimensional time t=5.

but for just the droplet fluid. Using this approach
we can see that the initial horizontal jet consists
almost exclusively of layer fluid, a property which
again compares well experimental results;13 see
our figure 10 which shows the initial jetting and
the separate fluids. Figure 11 shows a typical ex-
ample of the free surface and constituent parts
with different droplet sizes. The original droplet
fluid tends to form a pool near the base of the im-
pact with relatively little droplet fluid entering the
crown, certainly in the smaller droplet examples.
Figure 12 compares the volume ejected into the
splash with that originating in the layer and the
droplet. For D/H < 1 almost all of the ejected
fluid originates in the layer. Significant amounts
from the droplet start to increase for D/H > 1.5.
In all the cases considered so far the majority
comes from the layer, with a roughly 2 : 1 split
in the D/H = 8 case.

Surface roughness

The next issue of likely importance is ice surface
roughness. In practical applications the surface
beneath the layer is not flat as in the cases con-
sidered so far. In reality it will exhibit roughness
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Fig. 10 Small time jetting for D/H = 8 showing
the free-surface and the divide between droplet
and layer fluid.
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Fig. 11 An example of tracking droplet fluid
for a case D/H = 2 at time t=2. Note the pool
of droplet fluid and that little has entered the
crown.
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Fig. 12 Volume ejected against D/H ratio
at time t=5. The graph shows the total fluid
ejected (top line) and the amounts that orig-
inated in the layer (middle) and the droplet
(bottom).

on various scales both of the order of the layer
depth and considerably larger. In an attempt to
obtain guidance as to the importance this might
have, we have considered several idealized cases of
surface roughness to investigate their overall effect
on the splashing trends seen earlier. The simple

model we adopt is to include rectangular blocks
either side of the point of impact with varying
heights. The presence of such blocks tends to re-
duce the size of, and to some extent the angle of,
the crown formed with the overall effect of reduc-
ing the volume of liquid ejected. The reduction
only becomes a significant amount when the height
of the bumps approached the layer depth. If the
blocks are placed further apart the overall effect is
diminished, as might be expected. See figure 13,
which shows a sample of the crown shape for var-
ious block heights with the block separated by a
single droplet diameter, and figure 14 which shows
the same but with a 4D gap in between. Figure 15
compares the ejected amounts of fluid. For larger
droplets the same trends can be seen.
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Fig. 13 Free-surface shapes at time t=4 for
cases with surface roughness with the blocks
having heights 0,0.125,0.25,0.375 respectively.
The ratio D/H = 1 here.
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Fig. 14 Free-surface shapes at time t=7 for
cases with surface roughness with the blocks
having heights 0,0.125,0.25,0.375 respectively.
The blocks are further apart here than in figure
13 but H/D is again 1.

The overall constitution of the splash is largely un-
changed and most of the reduction comes from the
layer. It should also be noted that, even for high
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Fig. 15 The amount of fluid ejected for cases in
figure 13. The lines, from top to bottom, rep-
resent the bumps of height 0,0.125,0.25,0.375.

blocks, the small-time solution remains unchanged
as the blocks do not impede upon the small O(t

1
2 )

region discussed earlier. High blocks placed closer
to the impact point could enter this region and
change the small-time jetting behaviour. A similar
situation is found if the layer depth is very small
since then the small time problem includes the wall
layer and to leading order it is as if the droplet is
hitting the wall as the thin layer is unable to react
quickly enough to the incoming droplet.12

Deformed droplets

There is also interest in whether real droplets are
spherical on impact or instead have deformed sig-
nificantly on approaching the aerofoil. To examine
if any potential deformation could be significant
we have run several cases where the incoming
droplet is an oval rather than a circle (in our two-
dimensional context). Each droplet has the same
area and incoming velocity, and therefore momen-
tum, but in one case the droplet is stretched along
the x-axis and in the other along the y-axis. Fig-
ure 16 shows the free-surface shapes for an un-
deformed droplet and two stretched droplets. The
crown shape formed by such impacts is slightly dif-
ferent in each case but the differences are not par-
ticularly significant and comparison of the amount
of ejected fluid as shown in figure 17 would appear
to confirm that a slightly deformed initial droplet
shape has relatively little impact on the overall
longer term behaviour.

Air effects

The numerical method has also been modified to
include air effects. So far this has mostly been for
the inviscid regime, as in the example in figure 18 .
Air effects become significant near impact despite
the small air-to-water ratio of of densities. Similar
phenomena are predicted analytically in related
works Smith et al.,14 Purvis and Smith12, 15 which
incorporate also the ratio of viscosities through
part of the viscous terms in (2), (3) and numerical
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Fig. 16 Free-surface shapes for deformed
droplets at time t=3. The cases shown are (a)
stretched in x direction, (b) circular droplet,
(c) stretched in y-direction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.5  1  1.5  2 2.5  3  3.5

Fig. 17 Amount of fluid ejected against time
for deformed droplets. The cases shown are
(dashed) stretched in x direction, (dotted) cir-
cular droplet, (solid) stretched in y-direction

studies by us on the inclusion of the full viscous
terms are under way. These studies aim to capture
both air-cushioning and pre-existing-flow effects.
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Fig. 18 Free surface shape just before impact
when the effects of air are included. Note the
deformation of the droplet and layer due to air
cushioning effects.
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Further comments
The impact of a single droplet onto a layer of
fluid has been examined for various droplet sizes.
This appears to confirm that larger droplets pro-
duce more splash. The make-up of the ejected
fluid was also considered. The crown formed by a
droplet impact consists mostly of layer fluid being
splashed away rather than fluid originating in the
droplet, although an increasingly large percentage
comes from the drop as the ratio of droplet diam-
eter to layer depth is increased. Also examined
were the influence of surface roughness which, in
our idealised model, does have a significant effect
on the amount of fluid ejected especially when the
height of the roughness is comparable with the
depth of the layer. The initial droplet shape was
shown to be less crucial, with slight deformations
making little difference to the overall solution. Fi-
nally pre-impact cushioning has been observed in
cases where the influence of air is included.
There are many other issues that need to be ad-
dressed. These include the influence of viscosity,
a more detailed examination of the influence of
air layers, pre-existing fluid flow in the air, in the
water or in both. Also of interest would be three-
dimensional effects both in the small-time solution
and in the full volume of fluid problem.
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