3,996 research outputs found
Brief report: reduction in the frequency of needle recapping by effective education: a need for conceptual alteration
published_or_final_versio
Representative bureaucracy: does female police leadership affect gender-based violence arrests?
Representative bureaucracy theory postulates that passive representation leads to active representation of minority groups. This article investigates the passive representation of female police officers at leadership levels and the active representation of women vis-a-vis gender-based violence arrest rates in the UK. Much of the extant research on representative bureaucracy is located at street level, with evidence showing that discretionary power of minority bureaucrats can lead to active representation. This article is focused on leadership levels of a public bureaucracy. The empirical research is based upon a panel dataset of female police officers as an independent variable and gender-based violence arrest rates as a dependent variable. The analysis reveals that there is little evidence of active representation of women by female police leadership
Disease associated with equine coronavirus infection and high case fatality rate.
BackgroundEquine coronavirus (ECoV) is associated with clinical disease in adult horses. Outbreaks are associated with a low case fatality rate and a small number of animals with signs of encephalopathic disease are described.ObjectivesThe aim of this study is to describe the epidemiological and clinical features of two outbreaks of ECoV infection that were associated with an high case fatality rate.Animals14 miniature horses and 1 miniature donkey testing fecal positive for ECoV from two related disease outbreaks.MethodsRetrospective study describing the epidemiological findings, clinicopathological findings, and fecal viral load from affected horses.ResultsIn EcoV positive horses, 27% (4/15) of the animals died or were euthanized. Severe hyperammonemia (677 μmol/L, reference range ≤ 60 μmol/L) was identified in one animal with signs of encephalopathic disease that subsequently died. Fecal viral load (ECoV genome equivalents per gram of feces) was significantly higher in the nonsurvivors compared to animals that survived (P = .02).Conclusions and clinical importanceEquine coronavirus had a higher case fatality rate in this group of miniature horses than previously reported in other outbreaks of varying breeds. Hyperammonemia could contribute to signs of encephalopathic disease, and the fecal viral load might be of prognostic value in affected horses
When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation
Active Brownian particles (ABPs, such as self-phoretic colloids) swim at
fixed speed along a body-axis that rotates by slow angular
diffusion. Run-and-tumble particles (RTPs, such as motile bacteria) swim with
constant \u until a random tumble event suddenly decorrelates the
orientation. We show that when the motility parameters depend on density
but not on , the coarse-grained fluctuating hydrodynamics of
interacting ABPs and RTPs can be mapped onto each other and are thus strictly
equivalent. In both cases, a steeply enough decreasing causes phase
separation in dimensions , even when no attractive forces act between
the particles. This points to a generic role for motility-induced phase
separation in active matter. However, we show that the ABP/RTP equivalence does
not automatically extend to the more general case of \u-dependent motilities
Yield stress, heterogeneities and activated processes in soft glassy materials
The rheological behavior of soft glassy materials basically results from the
interplay between shearing forces and an intrinsic slow dynamics. This
competition can be described by a microscopic theory, which can be viewed as a
nonequilibrium schematic mode-coupling theory. This statistical mechanics
approach to rheology results in a series of detailed theoretical predictions,
some of which still awaiting for their experimental verification. We present
new, preliminary, results about the description of yield stress, flow
heterogeneities and activated processes within this theoretical framework.Comment: Paper presented at "III Workshop on Non Equilibrium Phenomena...",
Pisa 22-27 Sep. 200
Debugging of Web Applications with Web-TLR
Web-TLR is a Web verification engine that is based on the well-established
Rewriting Logic--Maude/LTLR tandem for Web system specification and
model-checking. In Web-TLR, Web applications are expressed as rewrite theories
that can be formally verified by using the Maude built-in LTLR model-checker.
Whenever a property is refuted, a counterexample trace is delivered that
reveals an undesired, erroneous navigation sequence. Unfortunately, the
analysis (or even the simple inspection) of such counterexamples may be
unfeasible because of the size and complexity of the traces under examination.
In this paper, we endow Web-TLR with a new Web debugging facility that supports
the efficient manipulation of counterexample traces. This facility is based on
a backward trace-slicing technique for rewriting logic theories that allows the
pieces of information that we are interested to be traced back through inverse
rewrite sequences. The slicing process drastically simplifies the computation
trace by dropping useless data that do not influence the final result. By using
this facility, the Web engineer can focus on the relevant fragments of the
failing application, which greatly reduces the manual debugging effort and also
decreases the number of iterative verifications.Comment: In Proceedings WWV 2011, arXiv:1108.208
Structural Elucidation of Amorphous Photocatalytic Polymers from Dynamic Nuclear Polarization Enhanced Solid State NMR
Dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (NMR) offers a recent approach to dramatically enhance NMR signals and has enabled detailed structural information to be obtained in a series of amorphous photocatalytic copolymers of alternating pyrene and benzene monomer units, the structures of which cannot be reliably established by other spectroscopic or analytical techniques. Large 13C cross-polarization (CP) magic angle spinning (MAS) signal enhancements were obtained at high magnetic fields (9.4–14.1 T) and low temperature (110–120 K), permitting the acquisition of a 13C INADEQUATE spectrum at natural abundance and facilitating complete spectral assignments, including when small amounts of specific monomers are present. The high 13C signal-to-noise ratios obtained are harnessed to record quantitative multiple contact CP NMR data, used to determine the polymers’ composition. This correlates well with the putative pyrene:benzene stoichiometry from the monomer feed ratio, enabling their structures to be understood
Electron spin coherence near room temperature in magnetic quantum dots
We report on an example of confined magnetic ions with long spin coherence near room temperature. This was achieved by confining single Mn2+ spins in colloidal semiconductor quantum dots (QDs) and by dispersing the QDs in a proton-spin free matrix. The controlled suppression of Mn–Mn interactions and minimization of Mn–nuclear spin dipolar interactions result in unprecedentedly long phase memory (TM ~ 8 μs) and spin–lattice relaxation (T1 ~ 10 ms) time constants for Mn2+ ions at T = 4.5 K, and in electron spin coherence observable near room temperature (TM ~ 1 μs)
Interpolating the Sherrington-Kirkpatrick replica trick
The interpolation techniques have become, in the past decades, a powerful
approach to lighten several properties of spin glasses within a simple
mathematical framework. Intrinsically, for their construction, these schemes
were naturally implemented into the cavity field technique, or its variants as
the stochastic stability or the random overlap structures. However the first
and most famous approach to mean field statistical mechanics with quenched
disorder is the replica trick. Among the models where these methods have been
used (namely, dealing with frustration and complexity), probably the best known
is the Sherrington-Kirkpatrick spin glass: In this paper we are pleased to
apply the interpolation scheme to the replica trick framework and test it
directly to the cited paradigmatic model: interestingly this allows to obtain
easily the replica-symmetric control and, synergically with the broken replica
bounds, a description of the full RSB scenario, both coupled with several minor
theorems. Furthermore, by treating the amount of replicas as an
interpolating parameter (far from its original interpretation) this can be
though of as a quenching temperature close to the one introduce in
off-equilibrium approaches and, within this viewpoint, the proof of the
attended commutativity of the zero replica and the infinite volume limits can
be obtained.Comment: This article is dedicated to David Sherrington on the occasion of his
seventieth birthda
Using MGA to shorten the beef breeding season (2002)
Modified conventional synchronization systems for beef cows boost fertility and increase the total number of females that can be inseminated.New March 2002 -- Extension website
- …
