Abstract

The interpolation techniques have become, in the past decades, a powerful approach to lighten several properties of spin glasses within a simple mathematical framework. Intrinsically, for their construction, these schemes were naturally implemented into the cavity field technique, or its variants as the stochastic stability or the random overlap structures. However the first and most famous approach to mean field statistical mechanics with quenched disorder is the replica trick. Among the models where these methods have been used (namely, dealing with frustration and complexity), probably the best known is the Sherrington-Kirkpatrick spin glass: In this paper we are pleased to apply the interpolation scheme to the replica trick framework and test it directly to the cited paradigmatic model: interestingly this allows to obtain easily the replica-symmetric control and, synergically with the broken replica bounds, a description of the full RSB scenario, both coupled with several minor theorems. Furthermore, by treating the amount of replicas n(0,1]n\in(0,1] as an interpolating parameter (far from its original interpretation) this can be though of as a quenching temperature close to the one introduce in off-equilibrium approaches and, within this viewpoint, the proof of the attended commutativity of the zero replica and the infinite volume limits can be obtained.Comment: This article is dedicated to David Sherrington on the occasion of his seventieth birthda

    Similar works