The interpolation techniques have become, in the past decades, a powerful
approach to lighten several properties of spin glasses within a simple
mathematical framework. Intrinsically, for their construction, these schemes
were naturally implemented into the cavity field technique, or its variants as
the stochastic stability or the random overlap structures. However the first
and most famous approach to mean field statistical mechanics with quenched
disorder is the replica trick. Among the models where these methods have been
used (namely, dealing with frustration and complexity), probably the best known
is the Sherrington-Kirkpatrick spin glass: In this paper we are pleased to
apply the interpolation scheme to the replica trick framework and test it
directly to the cited paradigmatic model: interestingly this allows to obtain
easily the replica-symmetric control and, synergically with the broken replica
bounds, a description of the full RSB scenario, both coupled with several minor
theorems. Furthermore, by treating the amount of replicas n∈(0,1] as an
interpolating parameter (far from its original interpretation) this can be
though of as a quenching temperature close to the one introduce in
off-equilibrium approaches and, within this viewpoint, the proof of the
attended commutativity of the zero replica and the infinite volume limits can
be obtained.Comment: This article is dedicated to David Sherrington on the occasion of his
seventieth birthda