310 research outputs found

    Isomer shift and magnetic moment of the long-lived 1/2+^{+} isomer in 3079^{79}_{30}Zn49_{49}: signature of shape coexistence near 78^{78}Ni

    Full text link
    Collinear laser spectroscopy has been performed on the 3079^{79}_{30}Zn49_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life was confirmed, and the nuclear spins and moments of the ground and isomeric states in 79^{79}Zn as well as the isomer shift were measured. From the observed hyperfine structures, spins I=9/2I = 9/2 and I=1/2I = 1/2 are firmly assigned to the ground and isomeric states. The magnetic moment ÎŒ\mu (79^{79}Zn) = −-1.1866(10) ÎŒN\mu_{\rm{N}}, confirms the spin-parity 9/2+9/2^{+} with a Îœg9/2−1\nu g_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment ÎŒ\mu (79m^{79m}Zn) = −-1.0180(12) ÎŒN\mu_{\rm{N}} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50N = 50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state: ή⟹rc2⟩79,79m\delta \langle r^{2}_{c}\rangle^{79,79m} = +0.204(6) fm2^{2}, providing first evidence of shape coexistence.Comment: 5 pages, 4 figures, 1 table, Accepeted by Phys. Rev. Lett. (2016

    Halos and related structures

    Full text link
    The halo structure originated in nuclear physics but is now encountered more widely. It appears in loosely bound, clustered systems where the spatial extension of the system is significantly larger than that of the binding potentials. A review is given on our current understanding of these structures, with an emphasis on how the structures evolve as more cluster components are added, and on the experimental situation concerning halo states in light nuclei.Comment: 27 pages, 3 figures, Contribution to Nobel Symposium 152 "Physics With Radioactive Beams

    Nuclear charge radii of molybdenum fission fragments

    Get PDF
    AbstractRadioisotopes of molybdenum have been studied using laser spectroscopy techniques at the IGISOL facility, University of JyvĂ€skylĂ€. Differences in nuclear charge radii have been determined for neutron deficient isotopes 90,91Mo and neutron rich isotopes 102–106,108Mo (and all stable isotopes). A smooth transition in the mean square charge radii is observed as the neutron number increases with no sudden shape change observed in the region around N=60. As N increases, the nuclear deformation appears to go beyond a maximum and a fall off at N=66 is observed. The magnetic moments of the odd isotopes 91,103,105Mo are also determined

    Precision Measurement of the First Ionization Potential of Nobelium

    Get PDF
    One of the most important atomic properties governing an element’s chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626   21 ± 0.000   05     eV . This work provides a stringent benchmark for state-of-the-art many-body atomic modeling that considers relativistic and quantum electrodynamic effects and paves the way for high-precision measurements of atomic properties of elements only available from heavy-ion accelerator facilities

    Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers

    Get PDF
    Collinear laser spectroscopy was performed on Zn (Z=30) isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N=33–49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N=50. Exactly one long-lived (>10 ms) isomeric state has been established in each 69–79Zn isotope. The nuclear magnetic dipole moments and spectroscopic quadrupole moments are well reproduced by large-scale shell–model calculations in the f5pg9 and fpg9d5 model spaces, thus establishing the dominant term in their wave function. The magnetic moment of the intruder Iπ=1/2+ isomer in 79Zn is reproduced only if the Îœs1/2 orbital is added to the valence space, as realized in the recently developed PFSDG-U interaction. The spin and moments of the low-lying isomeric state in 73Zn suggest a strong onset of deformation at N=43, while the progression towards 79Zn points to the stability of the Z=28 and N=50 shell gaps, supporting the magicity of 78Ni

    Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone

    Get PDF
    Trabecular bone has been previously recognized as time-dependent (viscoelastic) material, but the relationships of its viscoelastic behaviour with bone volume fraction (BV/TV) have not been investigated so far. Therefore, the aim of the present study was to quantify the time-dependent viscoelastic behaviour of trabecular bone and relate it to BV/TV. Uniaxial compressive creep experiments were performed on cylindrical bovine trabecular bone samples ([Formula: see text] ) at loads corresponding to physiological strain level of 2000 [Formula: see text] . We assumed that the bone behaves in a linear viscoelastic manner at this low strain level and the corresponding linear viscoelastic parameters were estimated by fitting a generalized Kelvin–Voigt rheological model to the experimental creep strain response. Strong and significant power law relationships ([Formula: see text] ) were found between time-dependent creep compliance function and BV/TV of the bone. These BV/TV-based material properties can be used in finite element models involving trabecular bone to predict time-dependent response. For users’ convenience, the creep compliance functions were also converted to relaxation functions by using numerical interconversion methods and similar power law relationships were reported between time-dependent relaxation modulus function and BV/TV

    People Interpret Robotic Non-linguistic Utterances Categorically

    Get PDF
    We present results of an experiment probing whether adults exhibit categorical perception when affectively rating robot-like sounds (Non-linguistic Utterances). The experimental design followed the traditional methodology from the psychology domain for measuring categorical perception: stimulus continua for robot sounds were presented to subjects, who were asked to complete a discrimination and an identification task. In the former subjects were asked to rate whether stimulus pairs were affectively different, while in the latter they were asked to rate single stimuli affectively. The experiment confirms that Non-linguistic Utterances can convey affect and that they are drawn towards prototypical emotions, confirming that people show categorical perception at a level of inferred affective meaning when hearing robot-like sounds. We speculate on how these insights can be used to automatically design and generate affect-laden robot-like utterances

    Nuclear charge radius of 26m^{26m}Al and its implication for Vud_{ud} in the quark-mixing matrix

    Full text link
    Collinear laser spectroscopy was performed on the isomer of the aluminium isotope 26m^{26m}Al. The measured isotope shift to 27^{27}Al in the 3s^{2}3p\;^{2}\!P^\circ_{3/2} \rightarrow 3s^{2}4s\;^{2}\!S_{1/2} atomic transition enabled the first experimental determination of the nuclear charge radius of 26m^{26m}Al, resulting in RcR_c=\qty{3.130\pm.015}{\femto\meter}. This differs by 4.5 standard deviations from the extrapolated value used to calculate the isospin-symmetry breaking corrections in the superallowed ÎČ\beta decay of 26m^{26m}Al. Its corrected Ft\mathcal{F}t value, important for the estimation of VudV_{ud} in the CKM matrix, is thus shifted by one standard deviation to \qty{3071.4\pm1.0}{\second}.Comment: 5 pages, 2 figures, submitted to Phys. Rev. Let
    • 

    corecore