298 research outputs found

    dynamics of large wood during a flash flood in two mountain catchments

    Get PDF
    Abstract. Understanding and modelling the dynamics of large wood (LW) in rivers during flood events has spurred a great deal of research in recent years. However, few studies have documented the effect of high-magnitude flash floods on LW recruitment, transport and deposition. On 25 October 2011, the Magra river basin (north-western Italy) was hit by an intense rainstorm, with hourly rainfall rates up to 130 mm h−1 and event rain accumulations up to 540 mm in 8 h. Such large rainfall intensities originated flash floods in the main river channels and in several tributaries, causing severe damages and loss of lives. Numerous bridges were partly or fully clogged by LW jams. A post-flood survey was carried out along the channels of two catchments that were severely and similarly affected by this event, the Gravegnola (34.3 km2) and Pogliaschina (25.1 km2). The analysis highlighted a very relevant channel widening in many channel reaches, which was more marked in the Gravegnola basin due to highly erodible material forming the slopes adjacent to the fluvial corridor. Large wood recruitment rates were very high, up to 1270 m3 km−1, and most of it (70–80 %) was eroded from the floodplains as a consequence of channel-widening processes, while the rest came from hillslopes processes. Overall, drainage area and channel slope are the most relevant controlling variables in explaining the reach-scale variability of LW recruitment, whereas LW deposition appears to be more complex, as correlation analysis did not evidence any statistically significant relationship with the tested controlling variables. Indeed, in-channel LW displacement during the flood has been mostly limited by the presence of bridges, given the relatively large width attained by channels after the event

    Radar rainfall estimation for the post-event analysis of a Slovenian flash-flood case: application of the Mountain Reference Technique at C-band frequency

    No full text
    International audienceThis article is dedicated to radar rainfall estimation for the post-event analysis of a Slovenian flash flood that occurred on 18 September 2007. The utility of the Mountain Reference Technique is demonstrated to quantify rain attenuation effects that affect C-band radar measurements in heavy rain. Maximum path-integrated attenuation between 15 and 20 dB were measured thanks to mountain returns for path-averaged rain rates between 10 and 15 mm h−1 over a 120-km path. The proposed technique allowed estimation of an effective radar calibration correction factor, assuming the reflectivity-attenuation relationship to be known. Screening effects were quantified using a geometrical calculation based on a digitized terrain model of the region. The vertical structure of the reflectivity was modelled with a normalized apparent vertical profile of reflectivity. Implementation of the radar data processing indicated that: (1) attenuation correction using the Hitschfeld Bordan algorithm allowed obtaining satisfactory radar rain estimates (Nash criterion of 0.8 at the event time scale); (2) due to the attenuation equation instability, it is however compulsory to limit the maximum path-integrated attenuation to be corrected to about 10 dB; (3) the results also proved to be sensitive on the parameterization of reflectivity-attenuation-rainrate relationships. The convective nature of the precipitation explains the rather good performance obtained. For more contrasted rainy systems with convective and stratiform regions, the combination of the vertical (VPR) and radial (attenuation, screening) sources of heterogeneity yields a still very challenging problem for radar quantitative precipitation estimation at C-band

    Debris flows in the eastern Italian Alps: seasonality and atmospheric circulation patterns

    Get PDF
    Abstract. The work examines the seasonality and large-scale atmospheric circulation patterns associated with debris-flow occurrence in the Trentino–Alto Adige region (eastern Italian Alps). Analysis is based on classification algorithms applied to a uniquely dense archive of debris flows and hourly rain gauge precipitation series covering the period 2000–2009. Results highlight the seasonal and synoptic forcing patterns linked to debris flows in the study area. Summer and fall season account for 92% of the debris flows in the record, while atmospheric circulation characterized by zonal west, mixed and meridional south and southeast (SE–S) patterns account for 80%. Both seasonal and circulation patterns exhibit geographical preference. In the case of seasonality, there is a strong north–south separation of summer–fall dominance, while spatial distribution of dominant circulation patterns exhibits clustering, with both zonal west and mixed patterns prevailing in the northwest and central east part of the region, while the southern part relates to meridional south and southeast pattern. Seasonal and synoptic pattern dependence is pronounced also on the debris-flow-triggering rainfall properties. Examination of rainfall intensity–duration thresholds derived for different data classes (according to season and synoptic pattern) revealed a distinct variability in estimated thresholds. These findings imply a certain control on debris-flow events and can therefore be used to improve existing alert systems

    Ethical issues associated with in-hospital emergency from the medical emergency team's perspective: a national survey

    Get PDF
    Medical Emergency Teams (METs) are frequently involved in ethical issues associated to in-hospital emergencies, like decisions about end-of-life care and intensive care unit (ICU) admission. MET involvement offers both advantages and disadvantages, especially when an immediate decision must be made. We performed a survey among Italian intensivists/anesthesiologists evaluating MET's perspective on the most relevant ethical aspects faced in daily practice

    Multiregional Satellite Precipitation Products Evaluation over Complex Terrain

    Get PDF
    An extensive evaluation of nine global-scale high-resolution satellite-based rainfall (SBR) products is performed using a minimum of 6 years (within the period of 2000-13) of reference rainfall data derived from rain gauge networks in nine mountainous regions across the globe. The SBR products are compared to a recently released global reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF). The study areas include the eastern Italian Alps, the Swiss Alps, the western Black Sea of Turkey, the French Cévennes, the Peruvian Andes, the Colombian Andes, the Himalayas over Nepal, the Blue Nile in East Africa, Taiwan, and the U.S. Rocky Mountains. Evaluation is performed at annual, monthly, and daily time scales and 0.25° spatial resolution. The SBR datasets are based on the following retrieval algorithms: Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA), the NOAA/Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN), and Global Satellite Mapping of Precipitation (GSMaP). SBR products are categorized into those that include gauge adjustment versus unadjusted. Results show that performance of SBR is highly dependent on the rainfall variability. Many SBR products usually underestimate wet season and overestimate dry season precipitation. The performance of gauge adjustment to the SBR products varies by region and depends greatly on the representativeness of the rain gauge network

    Buffer breakdown in GaN-on-Si HEMTs: A comprehensive study based on a sequential growth experiment

    Get PDF
    Abstract The aim of this work is to investigate the breakdown mechanisms of the layers constituting the vertical buffer of GaN-on-Si HEMTs; in addition, for the first time we demonstrate that the breakdown field of the AlN nucleation layer grown on a silicon substrate is equal to 3.2 MV/cm and evaluate its temperature dependence. To this aim, three samples, obtained by stopping the epitaxial growth of a GaN on Silicon stack at different steps, are studied and compared: Si/AlN, Si/AlN/AlGaN, full vertical stack up to the Carbon doped buffer layer. The current-voltage (IV) characterizations performed at both room temperature and high temperature show that: (i) the defectiveness of the AlN nucleation layer is the root cause of the leakage through an AlN/Silicon junction, and causes the vertical I-V characteristics to have a high device-to-device variability; (ii) the first AlGaN layer grown over the AlN, beside improving the breakdown voltage of the whole structure, causes the leakage current to be more stable and uniform across the sample area; (iii) a thick strain-relief stack and a carbon-doped GaN buffer enhance the breakdown voltage up to more than 750 V at 170 °C, and guarantee a remarkably low device-to-device variability. Furthermore, a set of constant voltage stress on the Si/AlN sample demonstrate that the aluminum nitride layer shows a time dependent breakdown, with Weibull-distributed failures and a shape factor greater than 1, in line with the percolation model

    Second-harmonic generation in silicon waveguides strained by silicon nitride

    Get PDF
    Silicon photonics meets the electronics requirement of increased speed and bandwidth with on-chip optical networks. All-optical data management requires nonlinear silicon photonics. In silicon only third-order optical nonlinearities are present owing to its crystalline inversion symmetry. Introducing a second-order nonlinearity into silicon photonics by proper material engineering would be highly desirable. It would enable devices for wideband wavelength conversion operating at relatively low optical powers. Here we show that a sizeable second-order nonlinearity at optical wavelengths is induced in a silicon waveguide by using a stressing silicon nitride overlayer. We carried out second-harmonic-generation experiments and first-principle calculations, which both yield large values of strain-induced bulk second-order nonlinear susceptibility, up to 40pm/V at 2.300 nm. We envisage that nonlinear strained silicon could provide a competing platform for a new class of integrated light sources spanning the near- to mid-infrared spectrum from 1.2 to 10 micron

    Flow Computations on Imprecise Terrains

    Get PDF
    We study the computation of the flow of water on imprecise terrains. We consider two approaches to modeling flow on a terrain: one where water flows across the surface of a polyhedral terrain in the direction of steepest descent, and one where water only flows along the edges of a predefined graph, for example a grid or a triangulation. In both cases each vertex has an imprecise elevation, given by an interval of possible values, while its (x,y)-coordinates are fixed. For the first model, we show that the problem of deciding whether one vertex may be contained in the watershed of another is NP-hard. In contrast, for the second model we give a simple O(n log n) time algorithm to compute the minimal and the maximal watershed of a vertex, where n is the number of edges of the graph. On a grid model, we can compute the same in O(n) time

    The ATLAS Readout System for LHC Runs 2 and 3

    Full text link
    The ReadOut System (ROS) is a central part of the data acquisition (DAQ) system of the ATLAS Experiment at the CERN Large Hadron Collider (LHC). The system is responsible for receiving and buffering event data from all detector subsystems and serving these to the High Level Trigger (HLT) system via a 10 GbE network, discarding or transporting data onward once the trigger has completed its selection process. The ATLAS ROS was completely replaced during the 2013-2014 experimental shutdown in order to meet the demanding conditions expected during LHC Run 2 and Run 3 (2015-2025). The ROS consists of roughly one hundred Linux-based 2U-high rack-mounted servers equipped with PCIe I/O cards and 10 GbE interfaces. This paper documents the system requirements for LHC Runs 2 and 3 and the design choices taken to meet them. The results of performance measurements and the re-use of ROS technology for the development of data sources, test platforms for other systems, and another ATLAS DAQ system component, namely the Region of Interest Builder (RoIB), are also discussed. Finally performance results for Run 2 operations are presented before looking at the upgrade for Run 3.Comment: 40 pages, 18 figures, journal pape
    • …
    corecore