247 research outputs found
Absolute properties of the binary system BB Pegasi
We present a ground based photometry of the low-temperature contact binary BB
Peg. We collected all times of mid-eclipses available in literature and
combined them with those obtained in this study. Analyses of the data indicate
a period increase of 3.0(1) x 10^{-8} days/yr. This period increase of BB Peg
can be interpreted in terms of the mass transfer 2.4 x 10^{-8} Ms yr^{-1} from
the less massive to the more massive component. The physical parameters have
been determined as Mc = 1.42 Ms, Mh = 0.53 Ms, Rc = 1.29 Rs, Rh = 0.83 Rs, Lc =
1.86 Ls, and Lh = 0.94 Ls through simultaneous solution of light and of the
radial velocity curves. The orbital parameters of the third body, that orbits
the contact system in an eccentric orbit, were obtained from the period
variation analysis. The system is compared to the similar binaries in the
Hertzsprung-Russell and Mass-Radius diagram.Comment: 17 pages, 3 figures, accepted for Astronomical Journa
The quest for companions to post-common envelope binaries: III. A reexamination of HW Virginis
We report new mid-eclipse times of the short-period sdB/dM binary HW Vir,
which differ substantially from the times predicted by a previous model. The
proposed orbits of the two planets in that model are found to be unstable. We
present a new secularly stable solution, which involves two companions orbiting
HW VIr with periods of 12.7 yr and 55 +/-15 yr. For orbits coplanar with the
binary, the inner companion is a giant planet with mass M_3 sin i_3 = 14 M_Jup
and the outer one a brown dwarf or low-mass star with a mass of M_4 sin i_4 =
30-120 M_Jup. Using the mercury6 code, we find that such a system would be
stable over more than 10^7 yr, in spite of the sizeable interaction. Our model
fits the observed eclipse-time variations by the light-travel time effect
alone, without invoking any additional process, thereby providing support for
the planetary hypothesis of the eclipse-time variations in close binaries. The
signature of non-Keplerian orbits may be visible in the data.Comment: accepted by A&
Radial Velocity Studies of Close Binary Stars. IX
Radial-velocity measurements and sine-curve fits to the orbital velocity
variations are presented for the eighth set of ten close binary systems: AB
And, V402 Aur, V445 Cep, V2082 Cyg, BX Dra, V918 Her, V502 Oph, V1363 Ori, KP
Peg, V335 Peg. Half of the systems (V445 Cep, V2082 Cyg, V918 Her, V1363 Ori,
V335 Peg) were discovered photometrically by the Hipparcos mission and all
systems are double-lined (SB2) contact binaries. The broadening function method
permitted improvement of the orbital elements for AB And and V502 Oph. The
other systems have been observed for radial velocity variations for the first
time; in this group are five bright (V<7.5) binaries: V445 Cep, V2082 Cyg, V918
Her, KP Peg and V335 Peg. Several of the studied systems are prime candidates
for combined light and radial-velocity synthesis solutions.Comment: 17+ pages, 2 tables, 4 figure
SS Ari: a shallow-contact close binary system
Two CCD epochs of light minimum and a complete R light curve of SS Ari are
presented. The light curve obtained in 2007 was analyzed with the 2003 version
of the W-D code. It is shown that SS Ari is a shallow contact binary system
with a mass ratio and a degree of contact factor f=9.4(\pm0.8%). A
period investigation based on all available data shows that there may exist two
distinct solutions about the assumed third body. One, assuming eccentric orbit
of the third body and constant orbital period of the eclipsing pair results in
a massive third body with and P_3=87.00.278M_{\odot}$. Both of the cases
suggest the presence of an unseen third component in the system.Comment: 28 pages, 9 figures and 5 table
Mycorrhization of fagaceae forests within mediterranean ecosystems
Mediterranean Fagaceae forests are valuable due to their ecological and socioeconomic aspects. Some profitable plant species, such as Castanea (timber and chestnut), Quercus (timber and cork), and Fagus (timber), encounter in this habitat the excellent edaphoclimatic conditions to develop. All Fagaceae plants are commonly associated to ECM fungal species, which are found in these forests in quite stable communities, mainly enriched in Russulaceae and Telephoraceae species. Currently, the Mediterranean Basin is considered as one of the global biodiversity hotspots, since many of their endemic plant species are not found elsewhere and are now under threat. Due to climate changing and introduction of disease agents, Fagaceae forests are facing an adaptation challenge to both biotic and abiotic threats. Although ECM communities are highly disturbed by climate factors and tree disease incidence, they could play an important role in increasing water availability to the plant and also improving plant tree defense against pathogens. Recent advances, namely, on genomics and transcriptomics, are providing tools for increasing the understanding of Fagaceae mycorrhization process and stress responses to biotic and abiotic stresses. Such studies can provide new information for the implementation of the most adequate management policies for protecting threaten Mediterranean forests.info:eu-repo/semantics/publishedVersio
Allosteric Regulation of Fibronectin/α5β1 Interaction by Fibronectin-Binding MSCRAMMs
Citation: Liang, X. W., Garcia, B. L., Visai, L., Prabhakaran, S., Meenan, N. A. G., Potts, J. R., . . . Hook, M. (2016). Allosteric Regulation of Fibronectin/alpha(5)beta(1) Interaction by Fibronectin-Binding MSCRAMMs. Plos One, 11(7), 17. doi:10.1371/journal.pone.0159118Adherence ofmicrobes to host tissues is a hallmark of infectious disease and is often mediated by a class of adhesins termed MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules). Numerous pathogens express MSCRAMMs that specifically bind the heterodimeric human glycoprotein fibronectin (Fn). In addition to roles in adhesion, Fn-binding MSCRAMMs exploit physiological Fn functions. For example, several pathogens can invade host cells by a mechanism whereby MSCRAMM-bound Fn bridges interaction with alpha(5)beta(1) integrin. Here, we investigate two Fn-binding MSCRAMMs, FnBPA (Staphylococcus aureus) and BBK32 (Borrelia burgdorferi) to probe structure-activity relationships of MSCRAMM-induced Fn/alpha(5)beta(1) integrin activation. Circular dichroism, fluorescence resonance energy transfer, and dynamic light scattering techniques uncover a conformational rearrangement of Fn involving domains distant from the MSCRAMM binding site. Surface plasmon resonance experiments demonstrate a significant enhancement of Fn/alpha(5)beta(1) integrin affinity in the presence of FnBPA or BBK32. Detailed kinetic analysis of these interactions reveal that this change in affinity can be attributed solely to an increase in the initial Fn/alpha(5)beta(1) on-rate and that this rate-enhancement is dependent on high-affinity Fn-binding by MSCRAMMs. These data implicate MSCRAMM-induced perturbation of specific intramolecular contacts within the Fn heterodimer resulting in activation by exposing previously cryptic alpha(5)beta(1) interaction motifs. By correlating structural changes in Fn to a direct measurement of increased Fn/alpha(5)beta(1) affinity, this work significantly advances our understanding of the structural basis for the modulation of integrin function by Fn-binding MSCRAMMs
Cell Invasion by Neisseria meningitidis Requires a Functional Interplay between the Focal Adhesion Kinase, Src and Cortactin
Entry of Neisseria meningitidis (the meningococcus) into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin or vitronectin bound to the surface protein Opc forming a bridge to the respective integrins. This interaction leads to cytoskeletal rearrangement and uptake of meningococci. In this study, we determined that the focal adhesion kinase (FAK), which directly associates with integrins, is involved in integrin-mediated internalization of N. meningitidis in HBMEC. Inhibition of FAK activity by the specific FAK inhibitor PF 573882 reduced Opc-mediated invasion of HBMEC more than 90%. Moreover, overexpression of FAK mutants that were either impaired in the kinase activity or were not capable of autophosphorylation or overexpression of the dominant-negative version of FAK (FRNK) blocked integrin-mediated internalization of N. meningitidis. Importantly, FAK-deficient fibroblasts were significantly less invaded by N. meningitidis. Furthermore, N. meningitidis induced tyrosine phosphorylation of several host proteins including the FAK/Src complex substrate cortactin. Inhibition of cortactin expression by siRNA silencing and mutation of critical amino acid residues within cortactin, that encompass Arp2/3 association and dynamin binding, significantly reduced meningococcal invasion into eukaryotic cells suggesting that both domains are critical for efficient uptake of N. meningitidis into eukaryotic cells. Together, these results indicate that N. meningitidis exploits the integrin signal pathway for its entry and that FAK mediates the transfer of signals from activated integrins to the cytoskeleton. A cooperative interplay between FAK, Src and cortactin then enables endocytosis of N. meningitidis into host cells
ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF-and IFN?-driven immunopathology
Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cyto-kines IFN? and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo. © Gawish et al
Post-fire, seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period
- …
