241 research outputs found

    IXO/XMS Detector Trade-Off Study

    Get PDF
    This document presents the outcome of the detector trade-off for the XMS instrument on IXO. This trade-off is part of the Cryogenic instrument Phase-A study as proposed to ESA in the Declaration of Interest SRONXMS-PL-2009-003 dated June 6, 2009. The detector consists of two components: a core array for the highest spectral resolution and an outer array to increase the field of view substantially with modest increase in the number of read-out channels. Degraded resolution of the outer array in comparison with the core array is accepted in order to make this scheme possible. The two detector components may be a single unit or separate units. These arrays comprise pixels and the components that allow them to be arrayed. Each pixel comprises a thermometer, an absorber, and the thermal links between them and to the rest of the array. These links may be interfaces or distinct components. The array infrastructure comprises the mechanical structure of the array, the arrangement of the leads, and features added to improve the integrated thermal properties of the array in the focal-plane assembly

    Searching for Diffuse Nonthermal X-Rays from the Superbubbles N11 and N51D in the Large Magellanic Cloud

    Full text link
    We report on observations of the superbubbles (SBs) N11 and N51D in the Large Magellanic Cloud (LMC) with Suzaku and XMM-Newton. The interior of both SBs exhibits diffuse X-ray emission, which is well represented by thin thermal plasma models with a temperature of 0.2-0.3keV. The presence of nonthermal emission, claimed in previous works, is much less evident in our careful investigation. The 3-sigma upper limits of 2-10keV flux are 3.6*10^{-14}ergs/cm^2/s and 4.7*10^{-14}ergs/cm^2/s for N11 and N51D, respectively. The previous claims of the detection of nonthermal emission are probably due to the inaccurate estimation of the non X-ray background. We conclude that no credible nonthermal emission has been detected from the SBs in the LMC, with the exception of 30 Dor C.Comment: 9 pages, accepted for publication in ApJ

    A Catalog of Candidate Intermediate-luminosity X-ray Objects

    Full text link
    ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray point sources in galaxies other than our own. X-ray observations of normal galaxies with ROSAT and Chandra have revealed that off-nuclear, compact, Intermediate-luminosity (Lx[2-10 keV] >= 1e39 erg/s) X-ray Objects (IXOs, a.k.a. ULXs [Ultraluminous X-ray sources]) are quite common. Here we present a catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the ROSAT HRI imaging data for galaxies with cz <= 5000 km/s from the Third Reference Catalog of Bright Galaxies (RC3). We have defined the cutoff Lx for IXOs so that it is well above the Eddington luminosity of a 1.4 Msun black hole (10^38.3 erg/s), so as not to confuse IXOs with ``normal'' black hole X-ray binaries. This catalog is intended to provide a baseline for follow-up work with Chandra and XMM, and with space- and ground-based survey work at wavelengths other than X-ray. We demonstrate that elliptical galaxies with IXOs have a larger number of IXOs per galaxy than non-elliptical galaxies with IXOs, and note that they are not likely to be merely high-mass X-ray binaries with beamed X-ray emission, as may be the case for IXOs in starburst galaxies. Approximately half of the IXOs with multiple observations show X-ray variability, and many (19) of the IXOs have faint optical counterparts in DSS optical B-band images. Follow-up observations of these objects should be helpful in identifying their nature.Comment: 29 pages, ApJS, accepted (catalog v2.0) (full resolution version of paper and future releases of catalog at http://www.xassist.org/ixocat_hri

    X-rays from the Power Sources of the Cepheus A Star-Forming Region

    Full text link
    We report an observation of X-ray emission from the exciting region of Cepheus A with the Chandra/ACIS instrument. What had been an unresolved X-ray source comprising the putative power sources is now resolved into at least 3 point-like sources, each with similar X-ray properties and differing radio and submillimeter properties. The sources are HW9, HW3c, and a new source that is undetected at other wavelengths "h10." They each have inferred X-ray luminosities >= 10^31 erg s^-1 with hard spectra, T >= 10^7 K, and high low-energy absorption equivalent to tens to as much as a hundred magnitudes of visual absorption. The star usually assumed to be the most massive and energetic, HW2, is not detected with an upper limit about 7 times lower than the detections. The X-rays may arise via thermal bremsstrahlung in diffuse emission regions associated with a gyrosynchrotron source for the radio emission, or they could arise from powerful stellar winds. We also analyzed the Spitzer/IRAC mid-IR observation from this star-formation region and present the X-ray results and mid-IR classifications of the nearby stars. HH 168 is not as underluminous in X-rays as previously reported.Comment: Accepted in the ApJ, 30 pages, 11 figures, in one .pdf fil

    Suzaku X-Ray Imaging and Spectroscopy of Cassiopeia A

    Full text link
    Suzaku X-ray observations of a young supernova remnant, Cassiopeia A, were carried out. K-shell transition lines from highly ionized ions of various elements were detected, including Chromium (Cr-Kalpha at 5.61 keV). The X-ray continuum spectra were modeled in the 3.4--40 keV band, summed over the entire remnant, and were fitted with a simplest combination of the thermal bremsstrahlung and the non-thermal cut-off power-law models. The spectral fits with this assumption indicate that the continuum emission is likely to be dominated by the non-thermal emission with a cut-off energy at > 1 keV. The thermal-to-nonthermal fraction of the continuum flux in the 4-10 keV band is best estimated as ~0.1. Non-thermal-dominated continuum images in the 4--14 keV band were made. The peak of the non-thermal X-rays appears at the western part. The peak position of the TeV gamma-rays measured with HEGRA and MAGIC is also shifted at the western part with the 1-sigma confidence. Since the location of the X-ray continuum emission was known to be presumably identified with the reverse shock region, the possible keV-TeV correlations give a hint that the accelerated multi-TeV hadrons in Cassiopeia A are dominated by heavy elements in the reverse shock region.Comment: Publ. Astron. Soc. Japan 61, pp.1217-1228 (2009

    Jupiter's X-ray and EUV auroras monitored by Chandra, XXM-Newton, and Hisaki satellite

    Get PDF
    Jupiter's X-ray auroral emission in the polar cap region results from particles which have undergone strong field-aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X-ray emission are essential to uncover the driving mechanism for the high-energy acceleration. The magnetospheric location of the source field line where the X-ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long-term monitoring of the X-rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long-term multiwavelength monitoring of Jupiter's X-ray and EUV auroral emissions was made by the Chandra X-ray Observatory, XMM-Newton, and Hisaki satellite. We find that the X-ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X-ray auroral region was found to be open to the interplanetary space. The other half of the X-ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin-Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high-energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators

    The discoveries of uranium 237 and symmetric fission — From the archival papers of Nishina and Kimura

    Get PDF
    Shortly before the Second World War time, Nishina reported on a series of prominent nuclear physical and radiochemical studies in collaboration with Kimura. They artificially produced 231Th, a member of the natural actinium series of nuclides, by bombarding thorium with fast neutrons. This resulted in the discovery of 237U, a new isotope of uranium, by bombarding uranium with fast neutrons, and confirmed that 237U disintegrates into element 93 with a mass number of 237. They also identified the isotopes of several middle-weighted elements produced by the symmetric fission of uranium. In this review article, the highlights of their work are briefly summarized along with some explanatory commentaries

    Characteristics of supernova remnant G351.7+0.8 and a distance argument against its association with PSR J1721-3532

    Full text link
    New images of the supernova remnant (SNR) G351.7+0.8 are presented based on 21cm HI-line emission and continuum emission data from the Southern Galactic Plane Survey (SGPS). SNR G351.7+0.8 has a flux density of 8.4+-0.7 Jy at 1420 MHz. Its spectral index is 0.52+-0.25 (S=v^{-alpha}) between 1420 MHz and 843 MHz, typical of adiabatically expanding shell-like remnants. HI observations show structures possibly associated with the SNR in the radial velocity range of -10 to -18 km/s, and suggest a distance of 13.2 kpc and a radius of 30.7 pc. The estimated Sedov age for G351.7+0.8 is less than 6.8 x 10^{4} yrs. A young radio pulsar PSR J1721-3532 lies close to SNR G351.7+0.8 on the sky. The new distance and age of G351.7+0.8 and recent proper-motion measurements of the pulsar strongly argue against an association between SNR G351.7+0.8 and PSR J1721-3532. There is an unidentified, faint X-ray point source 1RXS J172055.3-353937 which is close to G351.7+0.8. This may be a neutron star potentially associated with G351.7+0.8.Comment: 9 pages, 3 figures, accepted by MNRA

    Hard X-ray emission in the star-forming region ON2: discovery with XMM-Newton

    Full text link
    We obtained X-ray XMM-Newton observations of the open cluster Berkeley 87 and the massive star-forming region (SFR) ON 2. In addition, archival infrared Spitzer Space Telescope observations were used. It is likely that the SFR ON 2 and Berkeley 87 are at the same distance, 1.23 kpc, and hence are associated. The XMM-Newton observations detected X-rays from massive stars in Berkeley 87 as well as diffuse emission from the SFR ON 2. The two patches of diffuse X-ray emission are encompassed in the shell-like H II region GAL 75.84+0.40 in the northern part of ON 2 and in the ON 2S region in the southern part of ON 2. The diffuse emission from GAL 75.84+0.40 suffers an absorption column equivalent to A_V approx. 28 mag. Its spectrum can be fitted either with a thermal plasma model at T < 30 MK or by an absorbed power-law model with gamma; approx. -2.6. The X-ray luminosity of GAL 75.84+0.40 is L_X approx. 6 10^31 erg/s. The diffuse emission from ON 2S is adjacent to the ultra-compact H II (UCHII) region Cygnus 2N, but does not coincide with it or with any other known UCHII region. It has a luminosity of L_X approx. 4 10^31 erg/s. The spectrum can be fitted with an absorbed power-law model with gamma; approx.-1.4. We adopt the view of Turner and Forbes (1982) that the SFR ON 2 is physically associated with the massive star cluster Berkeley 87 hosting the WO type star WR 142. We discuss different explanations for the apparently diffuse X-ray emission in these SFRs. These include synchrotron radiation, invoked by the co-existence of strongly shocked stellar winds and turbulent magnetic fields in the star-forming complex, cluster wind emission, or an unresolved population of discrete sources.Comment: ApJ 2010, 712, 763. Reduced fig. resolution. Full resolution version is at http://www.astro.physik.uni-potsdam.de/research/abstracts/oskinova-ber87.htm
    corecore