55 research outputs found

    Practical management of riociguat in patients with pulmonary arterial hypertension

    Get PDF
    Riociguat is one of several approved therapies available for patients with pulmonary arterial hypertension (PAH). Treatment should be initiated and monitored at an expert center by a physician experienced in treating PAH, and the dose adjusted in the absence of signs and symptoms of hypotension. In certain populations, including patients with hepatic or renal impairment, the elderly, and smokers, riociguat exposure may differ, and dose adjustments should therefore be made with caution according to the established scheme. Common adverse events are often easily managed, particularly if they are discussed before starting therapy. Combination therapy with riociguat and other PAH-targeted agents is feasible and generally well tolerated, although the coadministration of phosphodiesterase type 5 inhibitors (PDE5i) and riociguat is contraindicated. An open-label, randomized study is currently ongoing to assess whether patients who do not achieve treatment goals while receiving PDE5i may benefit from switching to riociguat. In this review, we provide a clinical view on the practical management of patients with PAH receiving riociguat, with a focus on the opinions and personal experience of the authors. The reviews of this paper are available via the supplemental material section

    Influence of the incremental step size in work rate on exercise response and gas exchange in patients with pulmonary hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiopulmonary exercise testing (CPET) has become increasingly important as a routine procedure in daily clinical work. So far, it is generally accepted that an individualized exercise protocol with exercise duration of 6 to 12 minutes is preferable to assess maximal exercise performance. The aim of this study was to compare an individualized NYHA adapted exercise protocol with a fixed standard protocol in patients with severe pulmonary arterial hypertension.</p> <p>Methods</p> <p>Twenty-two patients (17 female, 5 male; mean age 49 ± 14 yrs) underwent symptom limited CPET on a bicycle. On two consecutive days each subject performed a stepwise CPET according to a modified Jones protocol (16 Watt per minute stages) as well as an individualized NYHA adapted protocol with 5 or 10 Watt/min stages in a randomized order. Oxygen uptake at peak exercise (peakVO<sub>2</sub>) and anaerobic threshold (VO<sub>2</sub>AT), maximal ventilation (VE), breathing reserve (VE/MVV), ventilatory efficiency (VE vs. VCO<sub>2 </sub>slope), exercise time, maximal power and work rate were assessed and compared between both protocols.</p> <p>Results</p> <p>Comparing both, adapted NYHA protocol and standardized Jones protocol, we found significant differences in maximal power (56.7 ± 19 W vs. 74 ± 18 W; p < 0.001) and exercise time (332 ± 107 sec. vs. 248 ± 72 sec.; p < 0.001). In contrast, no significant differences were obvious comparing both protocols concerning work rate, VE, VE/MVV, peakVO<sub>2</sub>, VO<sub>2</sub>AT and VE vs. VCO<sub>2 </sub>slope.</p> <p>Conclusion</p> <p>Variations of incremental step size during CPET significantly affect exercise time and maximal power, whereas relevant parameters for clinical judgement and prognosis such as oxygen uptake, ventilation and ventilatory efficiency remain unchanged. These findings have practical implications for the exercise evaluation of patients with pulmonary hypertension. To reach maximal results for ventilation, oxygen uptake and gas exchange an individualization of incremental step size appears not to be mandatory.</p

    Pulmonary Hypertension in Patients With COPD : Results From the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA)

    Get PDF
    Funding Information: FUNDING/SUPPORT: This work was supported by the German Center of Lung Research (DZL). COMPERA is funded by unrestricted grants from Acceleron , Actelion Pharmaceuticals , Bayer , OMT , and GSK . Funding Information: Financial/nonfinancial disclosures: The authors have reported to CHEST the following: C. D. V. has received fees for serving as a speaker, consultant, and an advisory board member from the following companies: Acceleron, Actelion, Bayer, Dompè, GSK, Janssen, MSD, Pfizer, and United Therapeutics. M. M. H. has received speaker fees, honoraria, or both for consultations from Acceleron, Actelion, Bayer, Janssen, MSD, and Pfizer. D. H. has received travel compensation from Actelion, Boehringer-Ingelheim, and Shire. D. P. has received fees for consultations from Actelion, Aspen, Biogen, Bayer, Boehringer Ingelheim, Johnson & Johnson, Novartis, Daiichi Sankyo, Sanofi, and Pfizer. N. B. received speaker fees from Bayer/MSD and Actelion/Janssen. K. M. O. has received speaker fees from Actelion, Bayer, and Lilly. H. A. G. has received honorariums for consultations, speaking at conferences, or both from Bayer HealthCare AG, Actelion, Encysive, Pfizer, Ergonex, Lilly, and Novartis. He is member of advisory boards for Bayer HealthCare AG, Pfizer, GSK, Actelion, Lilly, Merck, Encysive, and Ergonex. He also has received governmental grants from the German Research Foundation (DFG), Excellence Cluster Cardiopulmonary Research (ECCPS), State Government of Hessen (LOEWE), and the German Ministry for Education and Research (BMBF). M. Held has received speaker fees and honoraria for consultations from Actelion, Bayer, Boehringer Ingelheim Pharma, Encysive, Glaxo Smith Kline, Lilly, Janssen, Novartis, Pfizer, Nycomed, Roche, and Servier. H. K. has received speaker fees and honoraria for consultations from Actelion, Bayer, GSK, Lilly, Novartis, Pfizer, and United Therapeutics and research grants from Actelion. T. J. L. has received speaker fees, honoraria for consultations, and research funding from Actelion, Acceleron Pharma, Bayer, GSK, Janssen-Cilag, MSD, and Pfizer. S. R. has received honoraria for lectures, consultancy, or both from Actavis, Actelion, Bayer, GSK, Lilly, Novartis, Pfizer, and United Therapeutics. D. D. declares honoraria for lectures, consultancy, or both from Actelion, Bayer, GSK, Novartis, Pfizer, and Servier; participation in clinical trials for Actelion, Bayer, GSK, and Novartis; and research support to his institution from Actelion. R. B. has received fees from GSK, UT, Dompè, Bayer, Ferrer, MSD, and AOP Orphan Pharmaceuticals. M. C. has received fees for consulting from GSK and speaker fees from Bayer and Pfizer. M. Halank has received speaker fees and/or honoraria for consultations from Acceleron, Actelion, AstraZeneca, Bayer, BayerChemie, GSK, Janssen, MSD and Novartis. A. V.-N. reports receiving lecture fees from Actelion, Bayer, GlaxoSmithKline, Lilly, and Pfizer; serves on the advisory board of Actelion and Bayer; and serves on steering committees for Actelion, Bayer, GlaxoSmithKline, and Pfizer. D. S. received fees for lectures, consulting, research support, or a combination thereof to his institution from Actelion, Bayer, GSK, and Pfizer. R. E. has received speaker fees and honoraria for consultations from Actelion, Bayer, GSK, Lilly, Novartis, Pfizer, and United Therapeutics. J. S. R. G. has received speaker fees and honoraria for consultations from Acceleron, Actelion, Bayer, Complexa, GSK, MSD, Pfizer, and United Therapeutics. M. D. has received investigator, speaker, consultant, or steering committee member fees from Actelion, Aventis Pharmaceuticals, Bayer, Eli Lilly, Encysive, Gilead (Myogen), GlaxoSmithKline, Nippon Shyniaku, Novartis, Pfizer, Schering, and United Therapeutics; educational grants from Actelion, GlaxoSmithKline, Pfizer, and Therabel; and research grants from Actelion, Pfizer, and GlaxoSmithKline. She is holder of the Actelion Chair for Pulmonary Hypertension and of the GSK chair for research and education in pulmonary vascular pathology at the Catholic University of Leuven. J. C. has received fees for consultancies and lectures from Actelion, Bayer, GSK, United Therapeutics, and Pfizer as well as equipment and educational grants from Actelion. C. O. has received speaker fees and honoraria for consultations from Actelion, Bayer, GSK, Lilly, Novartis, and Pfizer. H. K. has received honoraria for lectures, consultancy, or both from Actelion-Janssen, Amicus Therapeutics, and Bristol Meyers Squibb. O. D. has or had consultancy relationships, has received research funding (last 3 years), or both from AbbVie, Actelion, Acceleron Pharma, Amgen, AnaMar, Baecon Discovery, Blade Therapeutics, Bayer, Boehringer Ingelheim, Catenion, Competitive Corpus, Drug Development International Ltd, CSL Behring, ChemomAb, Ergonex, Galapagos NV, Glenmark Pharmaceuticals, GSK, Horizon (Curzion) Pharmaceuticals, Inventiva, Italfarmaco, iQone, iQvia, Kymera Therapeutics, Lilly, medac, Medscape, Mitsubishi Tanabe Pharma, MSD, Novartis, Pfizer, Roche, Sanofi, Target Bio Science, and UCB in the area of potential treatments of scleroderma and its complications including PH. In addition, he has a patent mir-29 for the treatment of systemic sclerosis issued (US8247389, EP2331143). E. G. has received honoraria for consultations, speaking at conferences, or both from Bayer/MSD, Actelion/Janssen, GWT-TUD, and OMT/United Therapeutics. None declared (A. S.). Publisher Copyright: © 2021 The AuthorsBackground: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition. Research Question: Which factors determine the outcome of PH in COPD? Study Design and Methods: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH). Results: The population included incident patients with moderate PH in COPD (n = 68), with severe PH in COPD (n = 307), and with IPAH (n = 489). Patients with PH in COPD were older, predominantly male, and treated mainly with phosphodiesterase-5 inhibitors. Despite similar hemodynamic impairment, patients with PH in COPD achieved a worse 6-min walking distance (6MWD) and showed a more advanced World Health Organization functional class (WHO FC). Transplant-free survival rates at 1, 3, and 5 years were higher in the IPAH group than in the PH in COPD group (IPAH: 94%, 75%, and 55% vs PH in COPD: 86%, 55%, and 38%; P = .004). Risk factors for poor outcomes in PH in COPD were male sex, low 6MWD, and high pulmonary vascular resistance (PVR). In patients with severe PH in COPD, improvements in 6MWD by ≥ 30 m or improvements in WHO FC after initiation of medical therapy were associated with better outcomes. Interpretation: Patients with PH in COPD were functionally more impaired and had a poorer outcome than patients with IPAH. Predictors of death in the PH in COPD group were sex, 6MWD, and PVR. Our data raise the hypothesis that some patients with severe PH in COPD may benefit from PH treatment. Randomized controlled studies are necessary to explore this hypothesis further. Trial Registry: ClinicalTrials.gov; No.: NCT01347216; URL: www.clinicaltrials.govpublishersversionPeer reviewe

    Patients' functioning as predictor of nursing workload in acute hospital units providing rehabilitation care: a multi-centre cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Management decisions regarding quality and quantity of nurse staffing have important consequences for hospital budgets. Furthermore, these management decisions must address the nursing care requirements of the particular patients within an organizational unit. In order to determine optimal nurse staffing needs, the extent of nursing workload must first be known. Nursing workload is largely a function of the composite of the patients' individual health status, particularly with respect to functioning status, individual need for nursing care, and severity of symptoms. The International Classification of Functioning, Disability and Health (ICF) and the derived subsets, the so-called ICF Core Sets, are a standardized approach to describe patients' functioning status. The objectives of this study were to (1) examine the association between patients' functioning, as encoded by categories of the Acute ICF Core Sets, and nursing workload in patients in the acute care situation, (2) compare the variance in nursing workload explained by the ICF Core Set categories and with the Barthel Index, and (3) validate the Acute ICF Core Sets by their ability to predict nursing workload.</p> <p>Methods</p> <p>Patients' functioning at admission was assessed using the respective Acute ICF Core Set and the Barthel Index, whereas nursing workload data was collected using an established instrument. Associations between dependent and independent variables were modelled using linear regression. Variable selection was carried out using penalized regression.</p> <p>Results</p> <p>In patients with neurological and cardiopulmonary conditions, selected ICF categories and the Barthel Index Score explained the same variance in nursing workload (44% in neurological conditions, 35% in cardiopulmonary conditions), whereas ICF was slightly superior to Barthel Index Score for musculoskeletal conditions (20% versus 16%).</p> <p>Conclusions</p> <p>A substantial fraction of the variance in nursing workload in patients with rehabilitation needs in the acute hospital could be predicted by selected categories of the Acute ICF Core Sets, or by the Barthel Index score. Incorporating ICF Core Set-based data in nursing management decisions, particularly staffing decisions, may be beneficial.</p

    Idiopathic pulmonary arterial hypertension phenotypes determined by cluster analysis from the COMPERA registry

    Get PDF
    Funding Information: Marius M. Hoeper has received fees for lectures and/or consultations from Acceleron, Actelion, Bayer, MSD, and Pfizer. Nicola Benjamin has received fees for lectures and/or consultations from Actelion. Ekkehard Grünig has received fees for lectures and/or consultations from Actelion, Bayer, GSK, MSD, United Therapeutics, and Pfizer. Karen M. Olsson has received fees for lectures and/or consultations from Actelion, Bayer, United Therapeutics, GSK, and Pfizer. C. Dario Vizza has received fees from Actelion, Bayer, GSK, MSD, Pfizer, and United Therapeutics Europe. Anton Vonk-Noordegraaf has received fees for lectures and/or consultation from Actelion, Bayer, GSK, and MSD. Oliver Distler has/had a consultancy relationship with and/or has received research funding from 4-D Science, Actelion, Active Biotec, Bayer, Biogen Idec, Boehringer Ingelheim Pharma, BMS, ChemoAb, EpiPharm, Ergonex, espeRare foundation, GSK, Genentech/Roche, Inventiva, Lilly, medac, MedImmune, Mitsubishi Tanabe, Pharmacyclics, Pfizer, Sanofi, Serodapharm, and Sinoxa in the area of potential treatments of scleroderma and its complications including pulmonary arterial hypertension. In addition, Prof Distler has a patent for mir-29 for the treatment of systemic sclerosis licensed. Christian Opitz has received fees from Actelion, Bayer, GSK, Pfizer, and Novartis. J. Simon R. Gibbs has received fees for lectures and/or consultations from Actelion, Bayer, Bellerophon, GSK, MSD, and Pfizer. Marion Delcroix has received fees from Actelion, Bayer, GSK, and MSD. H. Ardeschir Ghofrani has received fees from Actelion, Bayer, Gilead, GSK, MSD, Pfizer, and United Therapeutics. Doerte Huscher has received fees for lectures and consultations from Actelion. David Pittrow has received fees for consultations from Actelion, Biogen, Aspen, Bayer, Boehringer Ingelheim, Daiichi Sankyo, and Sanofi. Stephan Rosenkranz has received fees for lectures and/or consultations from Actelion, Bayer, GSK, Pfizer, Novartis, Gilead, MSD, and United Therapeutics. Martin Claussen reports honoraria for lectures from Boehringer Ingelheim Pharma GmbH and Roche Pharma and for serving on advisory boards from Boehringer Ingelheim, outside the submitted work. Heinrike Wilkens reports personal fees from Boehringer and Roche during the conduct of the study and personal fees from Bayer, Biotest, Actelion, GSK, and Pfizer outside the submitted work. Juergen Behr received grants from Boehringer Ingelheim and personal fees for consultation or lectures from Actelion, Bayer, Boehringer Ingelheim, and Roche. Hubert Wirtz reports personal fees from Boehringer Ingelheim and Roche outside the submitted work. Hening Gall reports personal fees from Actelion, AstraZeneca, Bayer, BMS, GSK, Janssen-Cilag, Lilly, MSD, Novartis, OMT, Pfizer, and United Therapeutics outside the submitted work. Elena Pfeuffer-Jovic reports personal fees from Actelion, Boehringer Ingelheim, Novartis, and OMT outside the submitted work. Laura Scelsi reports personal fees from Actelion, Bayer, and MSD outside the submitted work. Siliva Ulrich reports grants from Swiss National Science Foundation, Zurich Lung, Swiss Lung, and Orpha Swiss, and grants and personal fees from Actelion SA/Johnson & Johnson Switzerland and MSD Switzerland outside the submitted work. The remaining authors have no conflicts of interest to disclose. Funding Information: This work was supported by the German Centre of Lung Research (DZL). COMPERA is funded by unrestricted grants from Acceleron , Actelion Pharmaceuticals , Bayer , OMT , and GSK . These companies were not involved in data analysis or the writing of this manuscript. Publisher Copyright: © 2020 The Authors Copyright: Copyright 2020 Elsevier B.V., All rights reserved.The term idiopathic pulmonary arterial hypertension (IPAH) is used to categorize patients with pre-capillary pulmonary hypertension of unknown origin. There is considerable variability in the clinical presentation of these patients. Using data from the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension, we performed a cluster analysis of 841 patients with IPAH based on age, sex, diffusion capacity of the lung for carbon monoxide (DLCO; <45% vs ≥45% predicted), smoking status, and presence of comorbidities (obesity, hypertension, coronary heart disease, and diabetes mellitus). A hierarchical agglomerative clustering algorithm was performed using Ward's minimum variance method. The clusters were analyzed in terms of baseline characteristics; survival; and response to pulmonary arterial hypertension (PAH) therapy, expressed as changes from baseline to follow-up in functional class, 6-minute walking distance, cardiac biomarkers, and risk. Three clusters were identified: Cluster 1 (n = 106; 12.6%): median age 45 years, 76% females, no comorbidities, mostly never smokers, DLCO ≥45%; Cluster 2 (n = 301; 35.8%): median age 75 years, 98% females, frequent comorbidities, no smoking history, DLCO mostly ≥45%; and Cluster 3 (n = 434; 51.6%): median age 72 years, 72% males, frequent comorbidities, history of smoking, and low DLCO. Patients in Cluster 1 had a better response to PAH treatment than patients in the 2 other clusters. Survival over 5 years was 84.6% in Cluster 1, 59.2% in Cluster 2, and 42.2% in Cluster 3 (unadjusted p < 0.001 for comparison between all groups). The population of patients diagnosed with IPAH is heterogenous. This cluster analysis identified distinct phenotypes, which differed in clinical presentation, response to therapy, and survival.publishersversionPeer reviewe

    Rare and low-frequency exonic variants and gene-by-smoking interactions in pulmonary function

    Get PDF
    Genome-wide association studies have identified numerous common genetic variants associated with spirometric measures of pulmonary function, including forced expiratory volume in one second (FEV1), forced vital capacity, and their ratio. However, variants with lower minor allele frequencies are less explored. We conducted a large-scale gene-smoking interaction meta-analysis on exonic rare and low-frequency variants involving 44,429 individuals of European ancestry in the discovery stage and sought replication in the UK BiLEVE study with 45,133 European ancestry samples and UK Biobank study with 59,478 samples. We leveraged data on cigarette smoking, the major environmental risk factor for reduced lung function, by testing gene-by-smoking interaction effects only and simultaneously testing the genetic main effects and interaction effects. The most statistically significant signal that replicated was a previously reported low-frequency signal in GPR126, distinct from common variant associations in this gene. Although only nominal replication was obtained for a top rare variant signal rs142935352 in one of the two studies, interaction and joint tests for current smoking and PDE3B were s

    Variants associated withHHIP expression have sex-differential effects on lung function

    Get PDF
    Publisher Copyright: © 2020 Fawcett KA et al.Background: Lung function is highly heritable and differs between the sexes throughout life. However, little is known about sex-differential genetic effects on lung function. We aimed to conduct the first genome-wide genotype-by-sex interaction study on lung function to identify genetic effects that differ between males and females. Methods: We tested for interactions between 7,745,864 variants and sex on spirometry-based measures of lung function in UK Biobank (N=303,612), and sought replication in 75,696 independent individuals from the SpiroMeta consortium. Results: Five independent single-nucleotide polymorphisms (SNPs) showed genome-wide significant (P<5x10 -8) interactions with sex on lung function, and 21 showed suggestive interactions (P<1x10 -6). The strongest signal, from rs7697189 (chr4:145436894) on forced expiratory volume in 1 second (FEV 1) (P=3.15x10 -15), was replicated (P=0.016) in SpiroMeta. The C allele increased FEV 1 more in males (untransformed FEV 1 β=0.028 [SE 0.0022] litres) than females (β=0.009 [SE 0.0014] litres), and this effect was not accounted for by differential effects on height, smoking or pubertal age. rs7697189 resides upstream of the hedgehog-interacting protein ( HHIP) gene and was previously associated with lung function and HHIP lung expression. We found HHIP expression was significantly different between the sexes (P=6.90x10 -6), but we could not detect sex differential effects of rs7697189 on expression. Conclusions: We identified a novel genotype-by-sex interaction at a putative enhancer region upstream of the HHIP gene. Establishing the mechanism by which HHIP SNPs have different effects on lung function in males and females will be important for our understanding of lung health and diseases in both sexes.Peer reviewe

    Variants associated with HHIP expression have sexdifferential effects on lung function

    Get PDF
    Background: Lung function is highly heritable and differs between the sexes throughout life. However, little is known about sex-differential genetic effects on lung function. We aimed to conduct the first genome-wide genotype-by-sex interaction study on lung function to identify genetic effects that differ between males and females.Methods: We tested for interactions between 7,745,864 variants and sex on spirometry-based measures of lung function in UK Biobank (N=303,612), and sought replication in 75,696 independent individuals from the SpiroMeta consortium.Results: Five independent single-nucleotide polymorphisms (SNPs) showed genome-wide significant (P-8) interactions with sex on lung function, and 21 showed suggestive interactions (P-6). The strongest signal, from rs7697189 (chr4:145436894) on forced expiratory volume in 1 second (FEV1) (P=3.15x10-15), was replicated (P=0.016) in SpiroMeta. The C allele increased FEV1 more in males (untransformed FEV1 β=0.028 [SE 0.0022] litres) than females (β=0.009 [SE 0.0014] litres), and this effect was not accounted for by differential effects on height, smoking or pubertal age. rs7697189 resides upstream of the hedgehog-interacting protein (HHIP) gene and was previously associated with lung function and HHIP lung expression. We found HHIP expression was significantly different between the sexes (P=6.90x10-6), but we could not detect sex differential effects of rs7697189 on expression.Conclusions: We identified a novel genotype-by-sex interaction at a putative enhancer region upstream of the HHIP gene. Establishing the mechanism by which HHIP SNPs have different effects on lung function in males and females will be important for our understanding of lung health and diseases in both sexes.</p

    Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry

    Get PDF
    Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase
    corecore