1,004 research outputs found

    The impact of logging on vertical canopy structure across a gradient of tropical forest degradation intensity in Borneo

    Get PDF
    Forest degradation through logging is pervasive throughout the world's tropical forests, leading to changes in the three-dimensional canopy structure that have profound consequences for wildlife, microclimate and ecosystem functioning. Quantifying these structural changes is fundamental to understanding the impact of degradation, but is challenging in dense, structurally complex forest canopies. We exploited discrete-return airborne LiDAR surveys across a gradient of logging intensity in Sabah, Malaysian Borneo, and assessed how selective logging had affected canopy structure (Plant Area Index, PAI, and its vertical distribution within the canopy). LiDAR products compared well to independent, analogue models of canopy structure produced from detailed ground-based inventories undertaken in forest plots, demonstrating the potential for airborne LiDAR to quantify the structural impacts of forest degradation at landscape scale, even in some of the world's tallest and most structurally complex tropical forests. Plant Area Index estimates across the plot network exhibited a strong linear relationship with stem basal area (R2 = 0.95). After at least 11–14 years of recovery, PAI was ~28% lower in moderately logged plots and ~52% lower in heavily logged plots than that in old-growth forest plots. These reductions in PAI were associated with near-complete lack of trees >30-m tall, which had not been fully compensated for by increasing plant area lower in the canopy. This structural change drives a marked reduction in the diversity of canopy environments, with the deep, dark understorey conditions characteristic of old-growth forests far less prevalent in logged sites. Full canopy recovery is likely to take decades. Synthesis and applications. Effective management and restoration of tropical forests requires detailed monitoring of the forest and its environment. We demonstrate that airborne LiDAR can effectively map the canopy architecture of the complex tropical forests of Borneo, capturing the three-dimensional impact of degradation on canopy structure at landscape scales, therefore facilitating efforts to restore and conserve these ecosystems

    Country-level determinants of the severity of the first global wave of the COVID-19 pandemic : an ecological study

    Get PDF
    Acknowledgements We would like to thank Dr Kathryn Martin, who provided valuable advice in study design. Funding This work was supported by the Aberdeen Clinical Academic Training Scheme.Peer reviewedPublisher PD

    Data on the use of dietary supplements in Danish patients with type 1 and type 2 diabetes

    Get PDF
    The data in this article describe the use of dietary supplements in Danish patients with type 1 diabetes (T1D) and type 2 diabetes (T2D). The data were collected from a web-based dietary survey on dietary habits in 774 patients with T1D (n = 426) and T2D (n = 348). The data demonstrate that 99% of the patients with diabetes use dietary supplements with no gender differences. In comparison, only 64% in the general population use dietary supplements [2].A higher proportion of people in the general population use multivitamin/mineral supplementation as compared to patients with diabetes (48% vs. 34–37%) and a higher proportion of women than men with diabetes use multivitamin/mineral supplementation (T1D: 43% women vs. 26% men and T2D: 45% women vs. 34% men). More patients with diabetes than the general population use supplements such as calcium together with vitamin D, vitamin D, vitamin B, vitamin C, vitamin E, magnesium, calcium, Q10, ginger, garlic, and other herbal supplements

    The GimA Locus of Extraintestinal Pathogenic E. coli: Does Reductive Evolution Correlate with Habitat and Pathotype?

    Get PDF
    IbeA (invasion of brain endothelium), which is located on a genomic island termed GimA, is involved in the pathogenesis of several extraintestinal pathogenic E. coli (ExPEC) pathotypes, including newborn meningitic E. coli (NMEC) and avian pathogenic E. coli (APEC). To unravel the phylogeny of GimA and to investigate its island character, the putative insertion locus of GimA was determined via Long Range PCR and DNA-DNA hybridization in 410 E. coli isolates, including APEC, NMEC, uropathogenic (UPEC), septicemia-associated E. coli (SEPEC), and human and animal fecal isolates as well as in 72 strains of the E. coli reference (ECOR) collection. In addition to a complete GimA (∼20.3 kb) and a locus lacking GimA we found a third pattern containing a 342 bp remnant of GimA in this strain collection. The presence of GimA was almost exclusively detected in strains belonging to phylogenetic group B2. In addition, the complete GimA was significantly more frequent in APEC and NMEC strains while the GimA remnant showed a higher association with UPEC strains. A detailed analysis of the ibeA sequences revealed the phylogeny of this gene to be consistent with that obtained by Multi Locus Sequence Typing of the strains. Although common criteria for genomic islands are partially fulfilled, GimA rather seems to be an ancestral part of phylogenetic group B2, and it would therefore be more appropriate to term this genomic region GimA locus instead of genomic island. The existence of two other patterns reflects a genomic rearrangement in a reductive evolution-like manner

    Signature-Tagged Mutagenesis in a Chicken Infection Model Leads to the Identification of a Novel Avian Pathogenic Escherichia coli Fimbrial Adhesin

    Get PDF
    The extraintestinal pathogen, avian pathogenic E. coli (APEC), known to cause systemic infections in chickens, is responsible for large economic losses in the poultry industry worldwide. In order to identify genes involved in the early essential stages of pathogenesis, namely adhesion and colonization, Signature-tagged mutagenesis (STM) was applied to a previously established lung colonization model of infection by generating and screening a total of 1,800 mutants of an APEC strain IMT5155 (O2:K1:H5; Sequence type complex 95). The study led to the identification of new genes of interest, including two adhesins, one of which coded for a novel APEC fimbrial adhesin (Yqi) not described for its role in APEC pathogenesis to date. Its gene product has been temporarily designated ExPEC Adhesin I (EA/I) until the adhesin-specific receptor is identified. Deletion of the ExPEC adhesin I gene resulted in reduced colonization ability by APEC strain IMT5155 both in vitro and in vivo. Furthermore, complementation of the adhesin gene restored its ability to colonize epithelial cells in vitro. The ExPEC adhesin I protein was successfully expressed in vitro. Electron microscopy of an afimbriate strain E. coli AAEC189 over-expressed with the putative EA/I gene cluster revealed short fimbrial-like appendages protruding out of the bacterial outer membrane. We observed that this adhesin coding gene yqi is prevalent among extraintestinal pathogenic E. coli (ExPEC) isolates, including APEC (54.4%), uropathogenic E. coli (UPEC) (65.9%) and newborn meningitic E. coli (NMEC) (60.0%), and absent in all of the 153 intestinal pathogenic E. coli strains tested, thereby validating the designation of the adhesin as ExPEC Adhesin I. In addition, prevalence of EA/I was most frequently associated with the B2 group of the EcoR classification and ST95 complex of the multi locus sequence typing (MLST) scheme, with evidence of a positive selection within this highly pathogenic complex. This is the first report of the newly identified and functionally characterized ExPEC adhesin I and its significant role during APEC infection in chickens

    Modelling the limits on the response of net carbon exchange to fertilization in a south-eastern pine forest

    Full text link
    Using a combination of model simulations and detailed measurements at a hierarchy of scales conducted at a sandhills forest site, the effect of fertilization on net ecosystem exchange ( NEE ) and its components in 6-year-old Pinus taeda stands was quantified. The detailed measurements, collected over a 20-d period in September and October, included gas exchange and eddy covariance fluxes, sampled for a 10-d period each at the fertilized stand and at the control stand. Respiration from the forest floor and above-ground biomass was measured using chambers during the experiment. Fertilization doubled leaf area index (LAI) and increased leaf carboxylation capacity by 20%. However, this increase in total LAI translated into an increase of only 25% in modelled sunlit LAI and in canopy photosynthesis. It is shown that the same climatic and environmental conditions that enhance photosynthesis in the September and October periods also cause an increase in respiration The increases in respiration counterbalanced photosynthesis and resulted in negligible NEE differences between fertilized and control stands. The fact that total biomass of the fertilized stand exceeded 2·5 times that of the control, suggests that the counteracting effects cannot persist throughout the year. In fact, modelled annual carbon balance showed that gross primary productivity ( GPP ) increased by about 50% and that the largest enhancement in NEE occurred in the spring and autumn, during which cooler temperatures reduced respiration more than photosynthesis. The modelled difference in annual NEE between fertilized  and  control  stands  (approximately  200 1;g 2;C 3;m −2 y −1 )  suggest that the effect of fertilization was sufficiently large to transform the stand from a net terrestrial carbon source to a net sink.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73712/1/j.1365-3040.2002.00896.x.pd
    corecore