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Abstract 18 

1. Forest degradation through logging is pervasive throughout the world’s tropical forests, leading 19 

to changes in the three-dimensional canopy structure that have profound consequences for 20 

wildlife, microclimate and ecosystem functioning. Quantifying these structural changes is 21 

fundamental to understanding the impact of degradation, but is challenging in dense, 22 

structurally complex forest canopies.  23 

2. We exploit discrete-return airborne LiDAR surveys across a gradient of logging intensity in 24 

Sabah, Malaysian Borneo, and assess how selective logging has affected canopy structure 25 

(Plant Area Index, PAI, and its vertical distribution within the canopy). 26 

3. LiDAR products compared well to independent, analogue models of canopy structure produced 27 

from detailed ground-based inventories undertaken in forest plots, demonstrating the potential 28 

for airborne LiDAR to quantify the structural impacts of forest degradation at landscape scale, 29 

even in some of the world’s tallest and most structurally complex tropical forests. 30 

4. PAI estimates across the plot network exhibited a strong linear relationship with stem basal 31 

area (R
2
 = 0.95). After at least 11-14 years of recovery, PAI was ~28% lower in moderately 32 

logged plots and ~52% lower in heavily logged plots than in old-growth forest plots. These 33 

reductions in PAI are associated with near-complete lack of trees >30-m tall, which has not 34 

been fully compensated for by increasing plant area lower in the canopy. This structural change 35 

drives a marked reduction in the diversity of canopy environments, with the deep, dark 36 

understory conditions characteristic of old-growth forests far less prevalent in logged sites, with 37 

full canopy recovery likely to take decades.  38 

5. Synthesis and Applications. Effective management and restoration of tropical forests requires 39 

detailed monitoring of the forest and its environment. These results demonstrate that airborne 40 

LiDAR can effectively map the canopy architecture of the complex tropical forests of Borneo, 41 

capturing the three-dimensional impact of degradation on canopy structure at landscape scales, 42 

therefore facilitating efforts to restore and conserve these ecosystems. 43 

Keywords: T ropical rainforest, Borneo, canopy structure, lidar, logging, degradation, leaf area index 44 
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 45 

1. Introduction 46 

Degradation through logging is pervasive across the tropics, representing an important source of 47 

anthropogenic carbon emissions (Houghton, 2013) and land use change towards simplified production 48 

landscapes (e.g. oil palm, rubber, pulpwood and coffee) (Gaveau et al., 2016; Ordway & Asner, 2020). 49 

The island of Borneo hosts some of the largest tracts of intact forest within SE Asia, but the extent of 50 

forests here has declined by >30% from an estimated ~558,000 km
3
 in 1973 (Gaveau et al., 2014), with 51 

the deforestation front sweeping inland from the low-lying coastal regions (Gaveau et al., 2014). By 52 

2010, >45% of the remaining forest had been subject to some degree of selective logging, including 53 

~60% of the forested area in Sabah (Gaveau et al., 2014). 54 

The direct impact of logging-driven degradation is to change the structure of the forest canopy. Trees 55 

that previously dominated the main canopy are removed, while crowns of the residual trees are damaged 56 

by felling of neighbouring trees (Pfeifer et al., 2015). Canopy structure contributes towards the 57 

regulation of microclimate (Hardwick et al., 2015; Jucker, Hardwick, et al., 2018), light availability 58 

(Kumagai et al., 2001; Montgomery & Chazdon, 2001) and canopy biogeochemical fluxes (Ellsworth 59 

& Reich, 1993; Flack-Prain, Meir, Malhi, Smallman, & Williams, 2019). To a large extent, it also 60 

determines the environmental diversity within landscapes, and therefore biodiversity (e.g. Coomes, 61 

Kunstler, Canham, & Wright, 2009; Struebig et al., 2013; Deere et al., 2020). Degradation-driven shifts 62 

in canopy architecture therefore have the potential to propagate, affecting many different facets of 63 

ecosystem function. 64 

To understand how forest structure responds to anthropogenic degradation – and therefore the wider 65 

impacts of degradation on tropical forests – it is critical to quantify the vertical distribution of foliage 66 

in the canopy. Foliar density is commonly quantified using Leaf Area Index (LAI, m
2
 m

-2
), defined as 67 

the total (one-sided) leaf area per unit ground surface area (Watson, 1947). The vertical distribution of 68 

LAI is characterised by the distribution Leaf Area Density, LAD (units: m
2
 m

-3
). The closely related 69 

Plant Area Index (PAI) and Plant Area Density (PAD) are estimated where methods do not distinguish 70 
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between leaves and branches or trunks (Gower, Kucharik, & Norman, 1999). Harvesting vertical 71 

columns of foliage through the canopy is difficult and labour-intensive. Consequently, few direct 72 

estimates of vertical canopy structure in tropical forests exist (i.e. La Selva Biological Station: Costa 73 

Rica: Clark, Olivas, Oberbauer, Clark, & Ryan, 2008; Olivas et al., 2013; Tang et al., 2012; Adolfo 74 

Ducke Reserve, Brazil: Stark et al., 2012). Measurements from ground-level are largely indirect, using 75 

estimates of gap fraction that do not resolve the vertical distribution of vegetation (Bréda, 2003). It is 76 

also difficult to map degradation of canopies in dense tropical forests using optical or radar remote 77 

sensing techniques. Disturbances may be too small and regeneration of canopy cover too rapid to be 78 

captured by optical remote sensing (Milodowski, Mitchard, & Williams, 2017), which also do not 79 

resolve vertical variations within-canopy. The biomass and leaf area density supported by these forests 80 

exceed the signal saturation points of widely available radar products (Joshi et al., 2017). 81 

Alternatively, canopy structure may be quantified at high spatial resolution using airborne remote 82 

sensing with LiDAR, which directly samples the three-dimensional structure of forest canopies at high 83 

spatial resolution (e.g. Stark et al., 2012; Tang et al., 2012; Vincent et al., 2017). To date, airborne 84 

LiDAR has not been applied to assess the impact of canopy degradation on the density and vertical 85 

structure of the hyper-diverse forests of Borneo. Airborne LiDAR-derived vertical canopy profiles have 86 

previously been used to investigate shifts in canopy structure driven by logging and regeneration in 87 

Costa Rica (Tang et al., 2012), finding that the PAI of secondary forests recovered to old-growth levels 88 

within 20 years. Other studies have examined the degradation driven by fires in Amazonian forests on 89 

the canopy profile (Almeida et al., 2016; Brando et al., 2019). However, the structural impact of 90 

degradation – and hence its wider environmental impact – is likely to be strongly dependent on the local 91 

context, including original old-growth canopy structure, and logging practices, which vary according 92 

to regulations and management decisions (Hosonuma et al., 2012). The dearth of studies documenting 93 

the basic structural impacts of degradation therefore represents a critical knowledge gap that 94 

undermines our ability to assess the resilience of these forests to future change (Mitchard, 2018). 95 

We investigate the impact of degradation, through selective logging, on the canopy PAD profiles of 96 

eight 1-ha plots located in Sabah, Malaysian Borneo. These plots span a gradient of logging intensity, 97 
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from undisturbed, old-growth forest to a series of degraded forest plots subject to different levels of 98 

logging (Both et al., 2019; Riutta et al., 2018). Logging predated the LiDAR survey by at least 11-14 99 

years (Pfeifer et al., 2015). The LiDAR survey therefore provides a temporal snapshot of recovery 100 

following differing logging intensities. In addition, detailed field inventories of canopy architecture at 101 

the sites enable the development of independent models of canopy structure for cross-comparison, in 102 

the absence of harvested profiles for a true validation. This evaluation is important. To date, validation 103 

of LiDAR-derived tropical canopy profiles against vertically harvested profiles has been limited to two 104 

sites: one site in the Amazon, using discrete-return LiDAR (Stark et al., 2012), and one site in Costa 105 

Rica, using full-waveform LiDAR (Tang et al., 2012). Together, the gradient in logging intensity and 106 

detailed field surveys present a unique opportunity to assess the ability of airborne LiDAR to detect 107 

canopy structural changes associated with degradation in structurally complex tropical forests. 108 

Specifically, we address the following questions: 109 

1) How does the canopy structure of degraded forests, logged at various intensities, differ from 110 

old-growth forests, characterised by the Plant Area Index (PAI), and its vertical distribution 111 

(PAD) within the canopy? 112 

2) How do the observed differences in PAI compare against classic structural attributes such as 113 

basal area? 114 

3) What are the implications of these structural changes for the diversity of canopy environments 115 

within logged forests, compared to old-growth systems?  116 

2. Materials and Methods 117 

For a more detailed description of the methods, please refer to the supplement. 118 

2.1. Field Sites 119 

Our study sites are located in the state of Sabah, Malaysian Borneo (Figure 1), comprising eight 1-ha 120 

plots (part of the Global Ecosystems Monitoring (GEM) network (Marthews et al., 2014)) (Table 1). 121 

Each plot spans one hactare, comprising a regular lattice of 25 0.04-ha (20-m x 20-m) subplots. Four 122 

plots are located in undisturbed old-growth forest: two within the Maliau Basin Conservation Area 123 
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(MLA-01, and MLA-02), two within the Danum Valley Conservation area inside the Danum 50 ha 124 

CTFS-ForestGEO plot (DAN-04 and DAN-05). The remaining four plots are located within logged 125 

forest fragments in the Kalabakan Forest Reserve. All three regions were originally within a connected 126 

tract of lowland dipterocarp rainforest. 127 

 128 
Figure 1 Map of northern Borneo, indicating the locations of the field sites. The plotted Aboveground Carbon Density (ACD) 129 
is from the Sabah-wide map published by Asner et al. (2018). Mangroves and plantations have been masked. 130 

The logged forest fragments have been subject to varying intensities of selective logging (Ewers et al., 131 

2011). Two plots (SAF-03 and SAF-04) have been selectively logged twice (“moderately logged”). 132 

Two plots (SAF-01, SAF-02) have been subject to four rounds of selective logging (“heavily logged”). 133 

The first round of logging occurred in the mid-1970s, with an estimated 114 m
3 
ha

-1
 was removed under 134 

a modified uniform system (Struebig et al., 2013). Subsequent rounds took place during the 1990s and 135 

early 2000s, during which an additional 37 m
3 
ha

-1
 of timber was removed at moderately logged sites. 136 

Lifting of restrictions at heavily logged sites resulted in further rounds of logging, removing a 137 

cumulative total of ~66 m
3 
ha

-1
 (Struebig et al., 2013). Thus the last date of logging predated the LiDAR 138 

survey by 11-14 years (Pfeifer et al., 2015). The normal protocol of 60-year rotations was not followed, 139 

as the area had been set aside for conversion to oil palm plantation between 2015-2017 (Ewers et al., 140 

2011), although the oil palm was never planted.  141 
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Table 1. Summary characteristics for the 1-ha plots on which this study is based.  142 

GEM 

plot code 

(SAFE site 

names) 

Location 

Latitude 

(N) / 

Longitude 

(E) 

Forest Type 
Basal Area* 

/ m
2
 ha

-1
 

Max. canopy 

height** / m 

LiDAR pulse 

density 

/ pulses m
-2 

mean (min, max) 

MLA-01 
Maliau 

Belian 

Maliau Basin 

Conservation 

Area 

4.747 / 

116.951 
Old-growth 41.6 ± 3.6 70.0 24.5 (9.0/34.6)  

MLA-02 

Maliau 

Seray a 

Maliau Basin 

Conservation 

Area 

4.737 / 

116.951 
Old-growth 34.7 ± 2.7 68.7 22.9 (14.8/34.2) 

DAN-04  
Danum 

Carbon 1 

Danum Valley 

Conservation 

Area 

4.953 / 

117.795 
Old-growth 32.0 ± 3.2 58.4 3.3 (2.7/4.1) 

DAN-05  

Danum 

Carbon 2 

Danum Valley 

Conservation 

Area 

4.958 / 

117.795 
Old-growth 30.6 ± 3.4 62.5 9.5 (5.2/18.6) 

SAF-03  
Fragment E 

SAFE landscape, 

Kalabakan 

Forest Reserve 

4.690 / 

117.586 

Moderately 

logged 
19.6 ± 1.9 48.6 32.9 (26.7/51.0) 

SAF-04  

Fragment LF 

SAFE landscape, 

Kalabakan 

Forest Reserve 

4.765 / 

117.702 

Moderately 

logged 
19.3 ± 1.7 33.0 19.6 (16.4/26.0) 

SAF-02  

Fragment B 

North 

SAFE landscape, 

Kalabakan 

Forest Reserve 

4.744 / 

117.618 

Heavily 

logged 
11.1 ± 1.8 29.5 34.8 (22.3/49.7) 

SAF-01  

Fragment B 

South 

SAFE landscape, 

Kalabakan 

Forest Reserve 

4.729 / 

117.618 

Heavily 

logged 
6.81 ± 1.0 28.5 39.5 (26.6/55.6) 

*Basal area for all trees with DBH ≥ 10 cm (Riutta et al., 2018) 143 
** 99 th percentile of LiDAR first return heights. 144 

2.2. Field estimation of vertical canopy structure 145 

In each plot, the positions and heights of all trees with a stem diameter at breast height (DBH) ≥ 10 cm 146 

were mapped using ground-based Field-Map technology (IFER, Ltd., Jílové u Prahy, Czech Republic). 147 

We mapped individual tree crowns by measuring 5-30 spatial positions, representing the boundary of a 148 

crown projected onto the horizontal plane. Crown projections were smoothed using the “smooth contour 149 

line” feature of Field-Map software v.11.  150 

We use the canopy inventory survey to derive estimates of vertical canopy structure independent of the 151 

LiDAR-based methods. Simple canopy volume models are clearly a simplification of true canopy 152 

structure. For example, tropical trees in the understory have been found to have deeper crowns than 153 

their counterparts in the upper canopy (Montgomery & Chazdon, 2001; Kohyama, Suzuki, 154 
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Partomihardjo, Yamada, & Kubo, 2003). Nevertheless, field-based canopy crown models provide a 155 

useful and independent estimate for validation purposes where direct observations are not available, 156 

and have previously been used to help validate LiDAR-based structural metrics (Coops et al., 2007; 157 

Knapp, Fischer, & Huth, 2018). For each plot we simulated a forest of ellipsoid model crowns, based 158 

on field-measured heights and crown areas, and crown depths determined using a regional allometric 159 

scaling relationship derived from the BAAD database (Falster et al., 2015). For comparison with the 160 

LiDAR canopy profiles, leaf area was assumed to be uniformly distributed within the crowns (e.g. 161 

Knapp et al., 2018); contributions from the trunks were ignored. To account for the predictive 162 

uncertainty associated with the allometric relationships, we used a Monte Carlo approach, producing 163 

100 crown models for each plot.  164 

2.3. LiDAR-estimation of canopy structure 165 

NERC’s Airborne Research Facility (ARF) undertook an airborne LiDAR survey in November 2014, 166 

using a Leica ALS50-II LiDAR sensor on-board a Dornier 228-201 (flight elevation: 1400–2400 167 

m.a.s.l., depending on the site; flight speed:120–140 knots). The average density of the resultant point 168 

clouds varied between sites due to differing levels of flight line overlap (Table 1). We classified the 169 

points into ground and non-ground returns using LAStools (rapidlasso GmbH, Gilching, Germany) and 170 

normalised return heights to height-above-ground. 171 

To quantify PAD distributions from airborne discrete LiDAR data, we use a variant of the 1D Beer-172 

Lambert approximation for light propagation through a turbid medium (MacArthur & Horn, 1969; Stark 173 

et al., 2012). Beer-Lambert models have been widely applied to estimate canopy PAD profiles from 174 

using both full-waveform (e.g. Tang et al., 2012) and discrete-return LiDAR (e.g. Stark et al., 2012). 175 

The resultant profiles have been validated against directly harvested foliage profiles in tropical forests 176 

in both the Brazilian Amazon (Stark et al., 2012) and Costa Rica (Tang et al., 2012). 177 

The basic premise of the Beer-Lambert approximation is that for a laterally homogeneous canopy, with 178 

vertical distribution of plant density PAD(z), where z is the depth into the canopy from its top, the PAD 179 
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for a given layer of thickness ∆z = |zi – zi-1| can be estimated based on the vertical column of LiDAR 180 

returns: 181 

𝑃𝐴𝐷 =   
1

𝜅∆𝑧
𝑙𝑛 (

∑ 𝑤𝑖
𝑧=𝑧𝑖−1
𝑧=0

∑ 𝑤𝑖
𝑧=𝑧𝑖
𝑧=0

)                     (1), 182 

where wi represents the points, weighted by the number of returns associated with their respective 183 

LiDAR pulse (e.g. Armston et al., 2013); κ is a correction factor accounting for canopy characteristics, 184 

such as clumping of vegetation within the canopy (Ni-Meister, Jupp, & Dubayah, 2001), and the leaf 185 

angle distribution (Detto, Asner, Muller-Landau, & Sonnentag, 2015). The number of returns entering 186 

the top of a canopy layer determines the numerator in the log-term; the number of returns penetrating 187 

into underlying layers defines the denominator. We use a layer thickness, ∆z, of 1-m. We do not account 188 

for the azimuth of the returns.  189 

We lack direct estimates of PAI for calibration of 𝜅. However, Schneider et al. (2019) have published 190 

vertical profiles of PAI for an old-growth dipterocarp-dominated stand at Lambir Hills, also in Borneo 191 

based on a combination of ground-based and tower-mounted terrestrial lidar, with a cumulative PAI 192 

above 2-m of ~8.4 m
2
m

-2
. As  the forest at Lambir Hills is similar in character to the old-growth forests 193 

in Maliau Basin and Danum Valley (Riutta et al., 2018), we assume a value of  𝜅 (0.50) that results in 194 

a mean estimated PAI for our old-growth plots that matches this value. This assumption means the 195 

reported PAI estimates carry additional uncertainty, and complicate interpretation of absolute PAI 196 

values against other studies. However, for a given model, we anticipate that the relative changes 197 

observed across the degradation gradient are more robustly comparable. 198 

We provide a sensitivity analysis of the LiDAR metrics to pulse density and spatial resolution in the 199 

supplement. 200 

2.4. Comparison against inventory-based crown volume distributions 201 

To compare the similarity of the LiDAR-derived PAD profiles against the crown volume distributions 202 

derived from the field inventory we employ a simple profile overlap test. The individual 1-ha PAD and 203 

crown volume profiles are normalised by dividing through by the total plot PAI and crown volume 204 
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respectively. We calculate profile overlap based on the percentage overlap between the two profiles. In 205 

the absence of harvested foliage profiles for validation, this approach provides a simple test of 206 

agreement between independent approaches to estimate the vertical distribution of vegetation in the 207 

canopy, noting that there is significant uncertainty attached to the field-based distributions. 208 

2.5. Assessing the diversity of canopy environments 209 

To assess the diversity of canopy environments across the degradation gradient, we use the canopy 210 

Shannon Index, which has previously been used to relate the canopy structural diversity to tropical 211 

forest dynamics (Stark et al., 2012). The Shannon Index increases with the number of canopy layers, 212 

and as PAD is distributed more evenly between layers: 213 

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =  ∑ 𝑃𝐴𝐷𝑖𝑙𝑛(𝑃𝐴𝐷𝑖)𝑁
𝑖=1     (2). 214 

3. Results 215 

3.1. LiDAR-derived PAI and vertical PAD distributions 216 

LiDAR-estimated PAI is substantially lower in forest plots degraded by logging compared to reference 217 

old-growth plots (Table 2). The gradient in degradation intensity is marked by a trend of decreasing 218 

PAI as logging intensity increases, following a linear relationship with basal area (R
2 
= 0.95; Figure 2). 219 

In Maliau Basin, PAI reached 8.7 m
2
 m

-2
, with similar PAI measured in the other old-growth plots. PAI 220 

declined by 28% and 52% in moderately and heavily logged forests respectively, compared to the mean 221 

old-growth forest PAI. 222 
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 223 
Figure 2. Comparison of the LiDAR-estimated PAI and plot basal area (basal area data from Riutta et al (2018)). Points 224 
indicate 1-ha means of 0.04 ha subplots, plotted with standard errors. Colours indicate degradation intensity: green –  old-225 
growth; blue –  moderately logged; magenta –  heavily logged. 226 

 227 

Table 2. Summary of PAI estimates across the degradation gradient. Profile overlap represents the percentage overlap 228 
between normalised crown volume profiles and LiDAR PAD profiles. 229 

Plot Forest Type 

Crown Volume / m
3
 ha

-1 LiDAR-based PAI / m
2
m

-2 

Profile overlap / %  

Mean ± S.D. 

(100 iterations) 

Mean + S Err  

(assuming κ = 0.44) 

MLA-01 Old-growth 14.9 ± 1.0 8.7 ± 0.3 84.3 

MLA-02 Old-growth 12.7 ± 0.5 8.3 ± 0.3 81.0 

DAN-04 Old-growth 10.0 ± 0.6 8.3 ± 0.2 80.7 

DAN-05 Old-growth 11.6 ± 1.0 8.3 ± 0.4 76.1 

SAF-03 Moderately  logged 4.8 ± 0.2 5.7 ± 0.4 86.9 

SAF-04 Moderately  logged 8.9 ± 0.3 6.4 ± 0.4 87.2 

SAF-02 Heavily  logged 4.0 ± 0.1 4.3 ± 0.4 83.5 

SAF-01 Heavily  logged 3.5 ± 0.2 3.6 ± 0.4 79.5 

 230 
 231 
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Vertical PAD profiles also revealed striking structural changes in the canopy across the degradation 232 

gradient. Old-growth forest plots were characterised by structurally complex canopies, stretching to 70-233 

m in height. In contrast, there was an almost complete loss of canopy material >30-40-m in moderately 234 

logged plots (SAF-03, SAF-04), and >20-30-m in heavily logged plots (SAF-01, SAF-02) (Figure 3; 235 

equivalent plots for DAN-04 and DAN-05 presented in Figure S1). Across all forest plots, PAD is 236 

distributed throughout the canopy, but highest in the mid-lower canopy (<30-m height). PAD contrasted 237 

strongly with the distribution of the original point clouds (Figure 3), reflecting the increased probability 238 

of interception of LiDAR pulses higher in the canopy. 239 
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 240 
Figure 3. Point clouds and vertical canopy profiles for six of the 1-ha plots illustrating changes in vertical canopy structure 241 
across the degradation gradient. From left to right: LiDAR point cloud coloured according to return number, k (first returns 242 
–  green, second returns –  blue, third returns –  magenta); vertical profile of LiDAR returns by return number, k; Plant Area 243 
Density (PAD) distributions modelled from the LiDAR; crown volume profiles (mean ± 95% confidence interval) estimated 244 
from field measurements. For the PAD profiles, thick lines represent 1-ha averages of 0.04-ha subplot profiles, subplots are 245 
plotted as semi-transparent histograms, giving an indication of structural variability.  246 

 247 
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3.2. Cross-comparison of LiDAR-estimated PAD profiles with field-based canopy 248 

models 249 

Aggregated crown volume estimates across the degradation gradient ranged from ~3.5 m
3
 m

-2
 in the 250 

most heavily logged plots to >10-m
3
m

-2
 in the old-growth plots. Canopy volumes corresponded closely 251 

with LiDAR-based PAI estimates (R
2
 = 0.89; Table 2). Vertical crown volume distributions mirrored 252 

the first-order patterns observed in the LiDAR-derived PAD distributions, with the loss of crown 253 

volume >30-40-m in the moderately logged plots, and further declines in crown volume >20-30-m for 254 

heavily logged plots (Figure 3). The morphology of the 1-ha crown volume distributions was similar to 255 

the LiDAR-derived PAD profiles at heavily logged and moderately logged plots (Profile Overlap >76%; 256 

Table 2). While differences were greater at old-growth plots, crown volume was distributed throughout 257 

the vertical profile, and highest in the mid- and lower canopy, consistent with the LiDAR estimates. 258 

3.3. Shifts in the diversity of canopy environments 259 

 260 
Figure 4. Changing canopy complexity across the degradation gradient at SAFE, as measured using the Shannon Index. 261 
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 262 
Figure 5. Comparison of the distribution of sub-canopy volume with varying cumulative overlying plant area, highlighting the 263 
decline in the length of the light gradient within the canopy as logging intensity increases.. 264 

Shannon Index distributions show that the diversity of canopy environments is diminished in logged 265 

forest, relative to old-growth forest (Figure 4). To a large part, this is driven by lower overall canopy 266 

height, and loss of associated structure above ~30-m, limiting the number of sub-canopy environments. 267 

The difference in the availability of sub-canopy environments across the degradation gradient is 268 

illustrated by considering the variation in sub-canopy volume as a function of cumulative overlying 269 

PAD (Figure 5). Recasting the canopy profiles like this reveals both logged forest and old-growth forest 270 

have similar canopy volumes at their surfaces (i.e. little overlying vegetation), where light is abundant. 271 

In contrast, there is divergence in the availability of understory environments. Old-growth forest is 272 

characterised by deep, shaded understories, with two-three times greater sub-canopy volumes than 273 

logged forests for a given level of overlying canopy PAD; understory volumes are most greatly reduced 274 

in heavily logged forests. 275 

4. Discussion 276 

4.1. Canopy structure in Borneo’s old-growth forest 277 

Old-growth forest plots within the Maliau Basin and Danum Valley Conservation Areas were 278 

characterised by high vegetation densities (PAI >8, assuming κ = 0.50), with the tallest trees reaching 279 

>70-m, overtopping a dense understory <~30-m. Profiles retrieved for the old-growth plots in Maliau 280 
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Basin and Danum Valley show significant variation both within and between plots (Figures 4, S6); 281 

however, they all share the common feature of gradually increasing PAD with canopy profile depth, 282 

and notable increases in understory PAD (below 20-30-m). This general pattern is consistent with 283 

canopy profiles published at another old-growth forest site in Western Borneo based on a combination 284 

of terrestrial LiDAR surveys undertaken at ground level and above the canopy (from a tower) (Lambir 285 

Hills; Schneider et al., 2019). Our PAD profiles do not discriminate leaves from woody vegetation 286 

(branches, twigs, trunks), which may contribute to around ~20% of the total PAI in tropical forests 287 

(Olivas et al., 2013), and will contribute particularly to increased PAD estimates in the understory 288 

(Schneider et al., 2019). 289 

Our analysis in Borneo contrasts with canopy profiles in old-growth forest elsewhere in Equatorial 290 

regions. Canopy PAD profiles reported for old-growth forests in Central Amazonia (direct harvest and 291 

discrete return LiDAR; Stark et al., 2012), Costa Rica (direct harvest: Clark et al., 2008; full-waveform 292 

LiDAR: Tang et al., 2012), and French Guiana (3D inversion of small-footprint waveform LiDAR; 293 

Vincent et al., 2017), often exhibit closed canopies with peaks in PAD at ~25-30-m, and differing levels 294 

of understory density. Across these Neotropical sites, canopy heights are limited to between 30- and 295 

50-m, thus foliage density is distributed along a shorter vertical dimension compared to Bornean old-296 

growth forests. Variability in old-growth canopy structure may limit the extent to which we can translate 297 

the ecological impacts of degradation from one region to another. 298 

4.2. Logging intensity drives first-order changes in canopy structure 299 

Logging practices in Borneo typically involve removal of the largest trees (Slik et al., 2013). This 300 

logging strategy results in a steep decline in the abundance of large-basal area trees relative to smaller 301 

sized stems (Riutta et al., 2018). The impact of this logging strategy on canopy structure is striking. PAI 302 

drops as a function of logging intensity, and is >50% lower at the most heavily logged sites relative to 303 

the average for pristine old-growth forest (Figure 2). The tallest cohort of trees, contributing PAD above 304 

~30-m height, is virtually absent from logged plots, an effect that has persisted more than a decade after 305 

the final round of logging. We know the impact of logging on canopy structure extends beyond the trees 306 

removed; felling frequently causes substantial collateral damage to surrounding trees (Pfeifer et al., 307 
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2015). There is also a significant shift in allocation of productivity to stem-wood production at the 308 

expense of canopy allocation in the logged forest plots (Riutta et al., 2018). However, our results 309 

indicate that the removal of large trees appears to be the principal mechanism driving the first-order 310 

changes in PAD distributions. Full recovery to pre-disturbance canopy structure will therefore likely 311 

take decades (Cannon, Peart, Leighton, & Kartawinata, 1994), requiring reestablishment of the largest 312 

stems. Importantly, this loss of PAD from the mid-upper canopy has not yet been compensated by a 313 

similar increase in understory PAD (at least above the 2-m threshold employed in this study). We caveat 314 

this conclusion with the uncertainty attached to lower canopy PAD estimates, which are particularly 315 

pronounced for the old-growth sites (see supplement). The consequences of this loss of foliage from 316 

the canopy include reduced shade and buffering of sub-canopy microclimate (Hardwick et al., 2015; 317 

Jucker, Hardwick, et al., 2018), and lower productivity (Riutta et al., 2018).  318 

The picture emerging from our logged plots in Borneo is one of slow canopy recovery. These plots 319 

provide a snapshot of forest recovery following two to four rounds of selective logging, 11-14 years 320 

after logging finished (Pfeifer et al., 2015; Riutta et al., 2018). Neither PAI, vertical profiles, nor 321 

structural diversity, have recovered in this period. This contrasts against relatively rapid rates of 322 

recovery of PAI observed at La Selva, Costa Rica (Tang et al., 2012). The forest at La Selva comprises 323 

a mixture of old-growth, selectively logged forests (>30 years post-logging (Clark et al., 2004)) and 324 

secondary forest recovering from clear-felling. Using full-waveform airborne LiDAR to map PAD 325 

profiles and PAI, Tang et al. (2012) found the PAI of selectively logged forests were close to old-growth 326 

values (within 10%), although direct comparisons are complicated by differences in the time since 327 

logging ceased. However, the secondary forest chronosequence suggests swift recovery rates: median 328 

PAI in young secondary forests at La Selva (age 6-17 years) was ~40% lower than old-growth forest, 329 

but returned close to old-growth values within ~20 years of clear-felling (Tang et al., 2012). Differences 330 

in recovery rates may reflect the differences in old-growth forest structure (e.g. height of dominant 331 

species), but also regional differences in logging practices and intensity (Hosonuma et al., 2012). 332 

Further exploration of factors driving differential recovery rates is critical to understanding the long-333 

term impacts of logging, and the resilience of degraded tropical forests. 334 
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4.3. Logging generates decades-long shifts in available sub-canopy environments 335 

Logging results in a significant contraction in the length of the light gradient and diversity of canopy 336 

environments (Figures 4, 5). In particular, the absence of a deep, shaded understory represents a 337 

fundamental difference between logged and old-growth forest. The shifts in canopy structure observed 338 

here are intuitive and consistent with a model of canopy dynamics whereby: following disturbance, a 339 

thicket of light-demanding vegetation becomes established, from which pioneer trees, such as 340 

Macaranga spp., emerge through rapid vertical growth, combining with remnant trees to form a new 341 

canopy (Slik, Verburg, & Kessler, 2002). As light availability is reduced, the density of light-demanding 342 

vegetation in the understory declines, and although shade-tolerant trees may be present, as recruits or 343 

pre-disturbance remnants, growth is slower (Nicotra, Chazdon, & Iriarte, 1999), occurring sporadically 344 

in response to new canopy openings, while the canopy continues to stretch upwards (Farrior, Bohlman, 345 

Hubbell, & Pacala, 2016). The absence of extensive deeply shaded understorey environments in logged 346 

forests (Figure 5) may limit habitat availability for specialists of these low light conditions (Deere et 347 

al., 2020). Our findings suggest that restoration of old-growth structure is only complete once PAD has 348 

recovered. Recovery involves vertical packing of the understory with species that can survive and grow 349 

even in the deepest shade (Kabakoff & Chazdon, 1996), and establishment of tall emergent trees. Based 350 

on the timescale of recovery at this snapshot (at least 11-14 years), full recovery of canopy diversity at 351 

logged sites is likely to take several decades. 352 

4.4. Implications for remote sensing of degradation in tropical forests 353 

The relative changes in PAI observed (Figure 2) are over three times greater than those suggested by 354 

previous estimates of PAI across the degradation gradient at SAFE, estimated using 5-m resolution 355 

RapidEye imagery calibrated against PAI estimates from hemispherical photographs (Pfeifer et al., 356 

2016). Pfeifer et al. (2016) suggest a more moderate decline of ~15% across the degradation gradient. 357 

This result may reflect saturation of PAI estimates in hemispherical photographs in tropical forests 358 

(Vincent et al., 2017), reducing the apparent impact of degradation on PAI. The close, linear 359 

correspondence between LiDAR-estimated PAI and basal area across the gradient highlights LiDAR’s 360 

value for studies assessing the environmental impacts of degradation in dense tropical forests. Given 361 
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the close relationship between basal area and standing carbon stocks, PAI-based basal area models may 362 

facilitate efforts to map Aboveground Carbon Density (Asner & Mascaro, 2014; Jucker, Asner, et al., 363 

2018).  364 

4.5. Management implications 365 

Selective logging is pervasive through many of the world’s tropical forests (Asner et al., 2005; Gaveau 366 

et al., 2014). The impact of the attendant degradation is spatially heterogeneous and of varying intensity 367 

(Berry, Phillips, Ong, & Hamer, 2008). Given that canopy structure underpins many aspects of 368 

ecosystem function (e.g. energy balance, photosynthesis, transpiration) and is a key determinant of 369 

habitat diversity, effective management of these forests requires detailed knowledge of how canopy 370 

structure varies in space and time (Struebig et al., 2013). We demonstrate that canopy profiles derived 371 

from airborne LiDAR capture the structural impacts of degradation at high resolution and accuracy. 372 

Importantly, LiDAR products enable an assessment of three-dimensional and sub-canopy variation in 373 

foliage density that will improve understanding of local variations in microclimate (Hardwick et al., 374 

2015), light environment (Kumagai et al., 2001; Montgomery & Chazdon, 2001), productivity (Riutta 375 

et al., 2018), and the way that different plant and animal species make use of these forest environments 376 

(Deere et al., 2020). This study highlights the role of LiDAR, through mapping of the full canopy profile 377 

of plant area density, to delineate areas of forest that promote positive ecosystem functions, such as 378 

biodiversity retention, at landscape-scale. LiDAR mapping therefore has clear potential to help 379 

prioritise regions for conservation and restoration, and to maximise the benefits of such interventions 380 

(Deere et al., 2020). 381 

5. Conclusions 382 

We used airborne LiDAR to quantify canopy architecture adjustments associated with logging and at 383 

least 11-14 years of recovery in Borneo’s ultra-complex tropical forest. We found a decline in PAI of 384 

~28% in sites logged twice, and ~52% at sites logged four times, relative to old-growth forest. This 385 

sharp decline is associated with the near-complete loss of PAD above ~30-m, with further reductions 386 

in PAD above 10-15 m at high logging intensities. One impact of these structural changes is a drop in 387 
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the diversity of canopy environments, in particular, the loss of a deep, shaded understory. These results 388 

are consistent with shifts in allocation away from foliage and into stems in logged forests (Riutta et al., 389 

2018), and suggest that full recovery of foliage density, and its vertical distribution, are likely to take 390 

decades, leaving a long-lived legacy of logging in recovering forests in Borneo.  391 

PAI estimates across the eight plots exhibited a strong linear relationship with independent 392 

measurements of basal area (R
2
 = 0.95), highlighting the value of LiDAR to quantify degradation 393 

impacts in dense, complex tropical forests and improve estimates of aboveground carbon stocks (Asner 394 

& Mascaro, 2014; Jucker, Asner, et al., 2018). The sensitivity of LiDAR-based PAD distributions to 395 

logging-driven changes in canopy structure will facilitate landscape-level descriptions of forest 396 

condition in high-biomass tropical forests. LiDAR mapping can therefore facilitate management of 397 

these forests by helping prioritise conservation and restoration efforts in a manner that maximises the 398 

benefits to ecosystem services (Deere et al., 2020). The dominant drivers of degradation (timber 399 

logging, fuelwood extraction, fire) vary from region to region (Hosonuma et al., 2012), with potentially 400 

distinct impacts on canopy structure (e.g. Tang et al., 2012; Almeida et al., 2016; Brando et al., 2019). 401 

Future studies should expand the use of airborne LiDAR across a wider range of environmental settings 402 

to understand the detectability and impact of natural and human disturbance on canopy structure, and 403 

the consequent effects on wider ecosystem functions. 404 
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