13 research outputs found

    Group classification of the Sachs equations for a radiating axisymmetric, non-rotating, vacuum space-time

    Get PDF
    We carry out a Lie group analysis of the Sachs equations for a time-dependent axisymmetric non-rotating space-time in which the Ricci tensor vanishes. These equations, which are the first two members of the set of Newman-Penrose equations, define the characteristic initial-value problem for the space-time. We find a particular form for the initial data such that these equations admit a Lie symmetry, and so defines a geometrically special class of such spacetimes. These should additionally be of particular physical interest because of this special geometric feature.Comment: 18 Pages. Submitted to Classical and Quantum Gravit

    Time-resolved imaging of magnetic vortex dynamics using holography with extended reference autocorrelation by linear differential operator

    Get PDF
    The magnetisation dynamics of the vortex core and Landau pattern of magnetic thin-film elements has been studied using holography with extended reference autocorrelation by linear differential operator (HERALDO). Here we present the first time-resolved x-ray measurements using this technique and investigate the structure and dynamics of the domain walls after excitation with nanosecond pulsed magnetic fields. It is shown that the average magnetisation of the domain walls has a perpendicular component that can change dynamically depending on the parameters of the pulsed excitation. In particular, we demonstrate the formation of wave bullet-like excitations, which are generated in the domain walls and can propagate inside them during the cyclic motion of the vortex core. Based on numerical simulations we also show that, besides the core, there are four singularities formed at the corners of the pattern. The polarisation of these singularities has a direct relation to the vortex core, and can be switched dynamically by the wave bullets excited with a magnetic pulse of specific parameters. The subsequent dynamics of the Landau pattern is dependent on the particular configuration of the polarisations of the core and the singularities

    Time-resolved soft X-ray microscopy of magnetic nanostructures at the P04 beamline at PETRA III

    No full text
    We present first time-resolved measurements of a new mobile full-field transmission microscope obtained at the soft X-ray beamline P04 at the high brilliance synchrotron radiation source PETRA III.A nanostructured magnetic permalloy (Ni80Fe20) sample can be excited either by making use of a mobile synchronized femtosecond laser system or by a 400 ps electric current pulse via a coplanar waveguide. The full-field soft X-ray microscope successively probes the time evolution of the magnetization of the sample via X-ray magnetic circular dichroism (XMCD) spectromicroscopy in a pump-probe scheme by varying the delay between pump and probe pulses electronically. Static and transient magnetic fields are available in the sample plane by permanent magnets and coils to reset the system and to provide external offset fields.The microscope generates a flat-top illumination field of 20 µm diameter by using a grating condenser and the sample plane is directly imaged by a micro zone plate with 70 nm resolution onto a 2D gate-able X-ray detector to select one particular bunch in the storage ring. The setup is built into a mobile endstation vacuum system with in-house developed three-axis piezo motorized stages for high accuracy positioning of all microscopy-components inside the chambers

    XMCD microscopy with synchronized soft X-ray and laser pulses at PETRA III for time-resolved studies

    No full text
    We present the setup of a new transmission X-ray microscope using zone plates at the soft X-ray beamline P04 at PETRA III, designed to utilize the X-ray magnetic circular dichroism (XMCD) contrast for imaging the magnetic orientation of nanostructured materials. We present the first results obtained with this setup at PETRA III using vacuum chambers with built-in multi-axis micropositioning stages that can be easily customized to mount a variety of components like condenser, samples, coils, zone plates etc. For further experiments the X-ray microscope will be equipped with a synchronized femtosecond laser system to implement a time-resolved detection of transient magnetic states in nanostructured media using a pump-probe scheme. The synchronization between laser and X-ray pulses has already been demonstrated at both the P04 and P11 beamlines at PETRA III with a jitter of σ < 15 ps

    Ovarian Cancer-Specific BRCA-like Copy-Number Aberration Classifiers Detect Mutations Associated with Homologous Recombination Deficiency in the AGO-TR1 Trial

    Get PDF
    Purpose: Previously, we developed breast cancer BRCA1-like and BRCA2-like copy-number profile shrunken centroid classifiers predictive for mutation status and response to therapy, targeting homologous recombination deficiency (HRD). Therefore, we investigated BRCA1- and BRCA2-like classification in ovarian cancer, aiming to acquire classifiers with similar properties as those in breast cancer. Experimental Design: We analyzed DNA copy-number profiles of germline BRCA1- and BRCA2-mutant ovarian cancers and control tumors and observed that existing breast cancer classifiers did not sufficiently predict mutation status. Hence, we trained new shrunken centroid classifiers on this set and validated them in the independent The Cancer Genome Atlas dataset. Subsequently, we assessed BRCA1/2-like classification and obtained germline and tumor mutation and methylation status of cancer predisposition genes, among them several involved in HR repair, of 300 ovarian cancer samples derived from the consecutive cohort trial AGO-TR1 (NCT02222883). Results: The detection rate of the BRCA1-like classifier for BRCA1 mutations and promoter hypermethylation was 95.6%. The BRCA2-like classifier performed less accurately, likely due to a smaller training set. Furthermore, three quarters of the BRCA1/2-like tumors could be explained by (epi)genetic alterations in BRCA1/2, germline RAD51C mutations and alterations in other genes involved in HR. Around half of the non-BRCA-mutated ovarian cancer cases displayed a BRCA-like phenotype. Conclusions: The newly trained classifiers detected most BRCA-mutated and methylated cancers and all tumors harboring a RAD51C germline mutations. Beyond that, we found an additional substantial proportion of ovarian cancers to be BRCA-like

    Ovarian Cancer-Specific BRCA-like Copy-Number Aberration Classifiers Detect Mutations Associated with Homologous Recombination Deficiency in the AGO-TR1 Trial

    No full text
    Purpose: Previously, we developed breast cancer BRCA1-like and BRCA2-like copy-number profile shrunken centroid classifiers predictive for mutation status and response to therapy, targeting homologous recombination deficiency (HRD). Therefore, we investigated BRCA1- and BRCA2-like classification in ovarian cancer, aiming to acquire classifiers with similar properties as those in breast cancer. Experimental Design: We analyzed DNA copy-number profiles of germline BRCA1- and BRCA2-mutant ovarian cancers and control tumors and observed that existing breast cancer classifiers did not sufficiently predict mutation status. Hence, we trained new shrunken centroid classifiers on this set and validated them in the independent The Cancer Genome Atlas dataset. Subsequently, we assessed BRCA1/2-like classification and obtained germline and tumor mutation and methylation status of cancer predisposition genes, among them several involved in HR repair, of 300 ovarian cancer samples derived from the consecutive cohort trial AGO-TR1 (NCT02222883). Results: The detection rate of the BRCA1-like classifier for BRCA1 mutations and promoter hypermethylation was 95.6%. The BRCA2-like classifier performed less accurately, likely due to a smaller training set. Furthermore, three quarters of the BRCA1/ 2-like tumors could be explained by (epi)genetic alterations in BRCA1/2, germline RAD51C mutations and alterations in other genes involved in HR. Around half of the non-BRCA-mutated ovarian cancer cases displayed a BRCA-like phenotype. Conclusions: The newly trained classifiers detected most BRCAmutated and methylated cancers and all tumors harboring a RAD51C germline mutations. Beyond that, we found an additional substantial proportion of ovarian cancers to be BRCA-like. _2021 The Authors; Published by the American Association for Cancer Research

    A landscape of pharmacogenomic interactions in cancer

    No full text
    Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations

    A Landscape of Pharmacogenomic Interactions in Cancer.

    Get PDF
    Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.This work was funded by the Wellcome Trust (086375 and 102696). F.I. was supported by the European Bioinformatics Institute and Wellcome Trust Sanger Institute post-doctoral (ESPOD) program. T.A.K. was supported by the National Cancer Institute (U24CA143835) and the Netherlands Organization for Scientific Research. D.T. was supported by the People Programme (Marie Curie Actions) of the 7th Framework Programme of the European Union (FP7/2007-2013; 600388) and the Agency of Competitiveness for Companies of the Government of Catalonia (ACCIO´ ). N.L.-B. was supported by La Fundacio ´ la Marato´ de TV3. M.E. was funded by the European Research Council (268626), the Ministerio de Ciencia e Innovacion (SAF2011-22803), the Institute of Health Carlos III (ISCIII) under the Integrated Project of Excellence (PIE13/00022), the Spanish Cancer Research Network (RD12/0036/0039), the Health and Science Departments of the Catalan Government Generalitat de Catalunya 2014-SGR 633, and the Cellex Foundation. U.M. was supported by a Cancer Research UK Clinician Scientist Fellowship. We thank Aiqing He for expression data and Ilya Shmulevich for assistance with the LOBICO framework. We thank P. Campbell, M. Ranzani, J. Brammeld, M. Petljak, F. Behan, C. Alsinet Armengol, H. Francies, V. Grinkevich, and A. ‘‘Lilla’’ Mupo for useful comments. P.R.-M., H.C., and H.d.S. are employees and shareholders of Bristol-Myers Squibb. Research in the M.J.G. lab is supported in part with funding from AstraZeneca
    corecore