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SUMMARY

Systematic studies of cancer genomes have pro-
vided unprecedented insights into the molecular na-
ture of cancer. Using this information to guide the
development and application of therapies in the
clinic is challenging. Here, we report how cancer-
driven alterations identified in 11,289 tumors from
29 tissues (integrating somaticmutations, copy num-
ber alterations, DNA methylation, and gene expres-
sion) can be mapped onto 1,001 molecularly anno-
tated human cancer cell lines and correlated with
sensitivity to 265 drugs. We find that cell lines faith-
fully recapitulate oncogenic alterations identified in
tumors, find that many of these associate with drug
sensitivity/resistance, and highlight the importance
of tissue lineage in mediating drug response. Logic-
based modeling uncovers combinations of alter-
ations that sensitize to drugs, while machine learning
740 Cell 166, 740–754, July 28, 2016 ª 2016 The Author(s). Published
This is an open access article under the CC BY license (http://creative
demonstrates the relative importance of different
data types in predicting drug response. Our analysis
and datasets are rich resources to link genotypes
with cellular phenotypes and to identify therapeutic
options for selected cancer sub-populations.

INTRODUCTION

Cancers arise because of the acquisition of somatic alterations in

their genomes that alter the function of key cancer genes (Strat-

ton et al., 2009). A number of these alterations are implicated as

determinants of treatment response in the clinic (Chapman et al.,

2011; Mok et al., 2009; Shaw et al., 2013). Studies from The Can-

cer Genome Atlas (TCGA) and the International Cancer Genome

Consortium (ICGC) have generated comprehensive catalogs of

the cancer genes involved in tumorigenesis across a broad

range of cancer types (Lawrence et al., 2014; Tamborero et al.,

2013b; Zack et al., 2013). The emerging landscape of oncogenic

alterations in cancer points to a hierarchy of likely functional pro-

cesses and pathways that may guide the future treatment of
by Elsevier Inc.
commons.org/licenses/by/4.0/).
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patients (Ciriello et al., 2013; Hanahan and Weinberg, 2000;

Stratton et al., 2009).

Clinical trials are complex and expensive, and pre-clinical data

that helps stratify patients can dramatically increase the likeli-

hood of success during clinical development (Cook et al.,

2014; Nelson et al., 2015). Thus, pre-clinical biological models

that, as much as reasonably possible, capture both the molecu-

lar features of cancer and the diversity of therapeutic responses

are a necessity. Human cancer cell lines are a facile experimental

model and are widely used for drug development. Large-scale

drug sensitivity screens in cancer cell lines have been used to

identify clinically meaningful gene-drug interactions (Barretina

et al., 2012; Basu et al., 2013; Garnett et al., 2012; Seashore-Lu-

dlow et al., 2015). In the past, such screens have labored under

the limitation of an imperfect understanding of the landscape of

cancer driver genes, but it is nowpossible to view drug sensitivity

in such models through the lens of clinically relevant oncogenic

alterations.

Here, we analyzed somatic mutations, copy number alter-

ations, and hypermethylation across a total of 11,289 tumor

samples from 29 tumor types to define a clinically relevant cata-

log of recurrent mutated cancer genes, focal amplifications/

deletions, and methylated gene promoters (Figure 1A; Tables

S1A–S1D). These oncogenic alterations were investigated as

possible predictors of differential drug sensitivity across 1,001

cancer cell lines (Figures 1B and 1C; Table S1E) screened with

265 anti-cancer compounds (Figures 1D and S1; Table S1F).

We have carried out an exploration of these data to determine

(1) the extent to which cancer cell lines recapitulate oncogenic

alterations in primary tumors, (2) which oncogenic alterations

associate with drug sensitivity, (3) whether logic combinations

of multiple alterations better explain drug sensitivity, and (4)

the relative contribution of different molecular data types, either

individually or in combination, in predicting drug response

(Figure 1E).

RESULTS

Oncogenic Alterations in Human Tumors
We built a comprehensive map of the oncogenic alterations in

human tumors using data from TCGA, ICGC, and other studies

(Figure 1A; Table S1C). The map consisted of (1) cancer

genes (CGs) for which the mutation pattern in whole-exome

sequencing (WES) data is consistent with positive selection, 2)

focal recurrently aberrant copy number segments (RACSs)

from SNP6 array profiles, and 3) hypermethylated informative

50C-phosphate-G-30 sites in gene promoters (iCpGs) from DNA

methylation data, hereafter collectively referred to as ‘‘Cancer

functional events’’ (CFEs). We identified CFEs by combining
Figure 1. Overview of Data and Analyses

(A) Publicly available genomic data for a large cohort of primary tumors were ana

(B) A panel of 1,001 genomically characterized human cancer cell lines.

(C) The catalog of CFEs from patient tumors was used to filter the set of molecu

cogenomic modeling.

(D) Cancer cell lines were screened for differential sensitivity against 265 anti-ca

(E) The resultant datasets were used for pharmacogenomic modeling.

See also Figure S1 and Table S1.
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data across all tumors (pan-cancer), as well as for each cancer

type (cancer specific) (Tables S2A, S2D, and S2H).

The WES dataset consisted of somatic variant calls from 48

studies of matched tumor-normal samples, comprising 6,815

samples and spanning 28 cancer types (Tables S1A–S1D).

CGs were detected per cancer type by combining the outputs

of three algorithms: MutSigCV, OncodriveFM, and Oncodrive-

CLUST (Lawrence et al., 2013; Rubio-Perez et al., 2015; Tambor-

ero et al., 2013a). This identified 461 unique pan-cancer genes

(Table S2A). We further added nine genes identified as putative

tumor suppressors (Wong et al., 2014). We mined the COSMIC

database to identify likely driver mutations in 358 of the 470

CGs (Table S2B; Supplemental Experimental Procedures).

Most tumors harbored only a few driver mutations (median

n = 2, range 0–64), consistent with previous reports (Kandoth

et al., 2013; Vogelstein et al., 2013).

RACSs were identified using ADMIRE for the analysis of 8,239

copy number arrays spanning 27 cancer types (van Dyk et al.,

2013) (Table S1D; Supplemental Experimental Procedures). In

total, 851 cancer-specific RACSs were gained (286 segments)

or lost (565 segments), with a median of 19 RACSs per tumor

type (Table S2D). The median number of genes within each

RACS was 15 for amplified regions and one for deleted regions.

The majority of known driver gene amplifications (e.g., EGFR,

ERBB2, MET, and MYC) and homozygous deletions (e.g.,

CDKN2A, PTEN, and RB1) were captured, with 320 RACSs

(38%) containing at least one known putative cancer driver

gene, in addition to 531 RACSs (62%) without known driver

genes. A smaller pan-cancer set (due to overlap in RACSs across

cancer types) was constructed by pooling these results,

comprising 425 RACSs (117 amplified and 308 deleted) (Tables

S2D–S2F).

iCpGs were identified using DNA methylation array data for

6,166 tumor samples spanning 21 cancer types (Table S1D).

We defined 378 iCpGs based on a multimodal distribution of

their methylation signal in at least one cancer type (Tables S2H

and S2I). This also established a discretization threshold used

to define such regions as hyper-methylated in the cell lines

(Table S2J; Supplemental Experimental Procedures).

In total, our multidimensional analysis of >11,000 patient

tumor samples identified 1,699 cancer-specific CFEs, which

were further merged into 1,273 unique pan-cancer CFEs

(Figure S2A).

Oncogenic Alterations in Patient Tumors Are Conserved

across Cell Lines

Next, we assessed the extent to which the mutational landscape

of cancer cell lines captures that seen in primary tumors. We uti-

lized a panel of 1,001 human cancer cell lines analyzed through

WES (n = 1,001), copy number (n = 996), gene expression
lyzed to identify clinically relevant features called cancer functional events.

lar alterations identified in cell lines and subsequently was used for pharma-

ncer compounds.
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(n = 968), and DNA methylation (n = 957) (http://cancer.sanger.

ac.uk/cell_lines) (Figure 1B) and which we reclassified according

to the TCGA tissue labels (Figure 2A; Tables S1A and S1E). Mo-

lecular alterations identified in cell lines were filtered using the

CFEs identified in the primary tumor samples, providing a set

of clinically relevant CFEs for the cell lines (Figure 1C).

Of the 1,273 pan-cancer CFEs identified in patient tumors,

1,063 (84%) occurred in at least one cell line, and 1,002 (79%)

occurred in at least three (Figure 2A). This concordance was

greatest for the RACSs (100% of 425; Table S2G), followed by

iCpGs (338 of 378, 89%; Table S2J) and CGs (300 of 470,

64%; Table S2C). When considering cancer-specific CFEs,

concordance was highest for CFEs occurring in at least 5% of

patients (median of 86% of CFEs covered across cancer types;

Figure 2A; Data S1A). Coverage of CFEs varied by cancer type,

and when we include infrequent CFEs (occurring in < 5% of pa-

tients), this concordance is markedly lower for the majority of

cancer types (median coverage = 46%; Figure S2B). CFEs ab-

sent in cell lines are reported in Table S2K.

The correlation between the frequency of CFEs in cell lines and

patient tumors was high for the majority of the cancer types and

for all three classes of CFEs (Figures 2B and S2C; Table S2L;

Supplemental Experimental Procedures). Using a simple near-

est-neighbor classifier based on the presence of CFEs in cell

lines and tumors across cancer types, we could correctly match

the tissue of origin of cell lines to primary tumors (and vice versa)

for 71% of the cases (27 out of 38 alteration profiles [randomly

expected 1%]) (Figures S2D and S2E; Table S2M; Supplemental

Experimental Procedures). This percentage increased to

81% and 92% (randomly expected 2% and 5%), when consid-

ering the second and fifth nearest-neighbors, respectively

(Figure S2E).

The frequency of alterations in 13 canonical cancer-associ-

ated pathways was highly correlated between cell lines and tu-

mors of the same cancer type (median R = 0.75 across all 13

pathways) (Figure 3A; Table S3A).

A previous hierarchical classification of �3,000 tumors identi-

fied two major subclasses: M and C class (dominated by muta-

tions and copy number alterations, respectively) (Ciriello et al.,

2013). We expanded this analysis by including methylation

data and by jointly analyzing cell lines and tumor samples. This

integrated analysis of 3,673 samples (composed of 1,001 cell

lines and 2,672 primary tumors for which all three data types

were available and that were positive for at least one of the

1,250 CFEs [Tables S3B and S3C]) yielded four classes referred

to as M, H, CD, and CA (Table S3D; Supplemental Experimental

Procedures). Class M is enriched for CG mutations, class H for

hypermethylation of iCpGs, and classes CD and CA for deleted
Figure 2. Representation of Cancer Functional Events in Cancer Cell L

(A) First bar chart: the percentage coverage of cancer functional events (CFEs) in

class of CFEs individually and when combined is shown. Second bar chart: the m

cancer-specific CFEs in at least one cell line. The solid line indicates coverage of C

frequently occurring cancer genes (CGs). Missing cancer genes are grouped by th

of cell lines for each cancer-type and the full name of each cancer-type and ass

(B)Matrix of Pearson correlations of CFE frequency between cell lines and patient t

correlations of CFEs within the same (on-diagonal) and between different (off-dia

See also Figure S2, Table S2, and Data S1.
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and amplified RACSs, respectively (Figures 3B and S3; Tables

S3E, S3F, and S3H; Data S1B). We observed a high concor-

dance between the predominant class of CFEs in primary tumors

and cell lines of the same tissue type (80% of cancer types, ex-

ceptions being GBM, KIRC, and PRAD) (Figure 3C; Table S3G;

Data S1B).

Taken together, these results show that a sufficiently large

panel of cell lines is able to capture individual clinically relevant

genomic alterations, in addition to pathway alterations and

global signatures of driver events.

A Therapeutic Landscape of Human Cancers
Modeling Pharmacogenomic Interactions

To investigate how CFEs detected in primary tumors impact

drug response, we first mapped these on our panel of cell lines

(Figure 1C; Tables S2C, S2G, and S2J). Cell lines underwent

extensive drug sensitivity profiling, screening 265 drugs across

990 cancer cell lines and generating 212,774 dose response

curves (median number of screened cell lines per drug = 878,

range = [366, 935]; Figure 1D). This is an expansion on previous

pharmacogenomic datasets (Barretina et al., 2012; Basu et al.,

2013; Garnett et al., 2012; Seashore-Ludlow et al., 2015). The ef-

fect of each drug on cell number was used tomodel sensitivity as

IC50 (drug concentration that reduces viability by 50%) or AUC

(area under the dose-response curve) values (Tables S4A and

S4B).

Screened compounds included cytotoxics (n = 19) and tar-

geted agents (n = 242) selected against 20 key pathways and

cellular processes in cancer biology (Figure 1D; Table S1F).

These 265 compounds include clinical drugs (n = 48), drugs

currently in clinical development (n = 76), and experimental com-

pounds (n = 141). We screened seven compounds as biological

replicates and observed good correlation between replicate IC50

values with a median Pearson correlation (R) = 0.65 (0.78 for the

compounds with most of IC50 values falling within the range of

tested concentrations) and consistent classification of cell lines

as sensitive or resistant to a compound (median Fisher’s exact

test [FET] log10 p value =�26) (Figure S1). Cluster analysis based

on AUC values confirmed that compounds with overlapping

nominal targets or targeting the same process/pathway had

similar activity profiles (Table S1G; Supplemental Experimental

Procedures).

We used three distinct analytical frameworks to define the

contribution of CFEs to the prediction of drug sensitivity (Fig-

ure 1E). ANOVA was used to identify single CFEs as markers

of drug response. Logic models identified combinations of

CFEs that improve the prediction of drug response. Lastly, we

used machine-learning algorithms to assess the contribution of
ines

the pan-cancer dataset occurring in at least one cell line. Coverage for each

edian coverage by cancer type of frequently occurring (>5% of tumor samples)

FEs occurring in >2 cell lines. Third bar chart: coverage in each cancer type of

e level of evidence supporting their classification as a cancer gene. The number

ociated acronym are shown.

umors for each cancer-type and class of CFEs. Box andwhisker plots show the

gonal) cancer-types.

http://cancer.sanger.ac.uk/cell_lines
http://cancer.sanger.ac.uk/cell_lines
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Figure 3. Comparative Analysis of Pathway Alterations and Global CFE Signatures in Cell Lines and Tumors

(A) Concordance of CFEs in cancer-associated pathways between cell lines and tumors.

(B) Enrichments of the dominant CFE type across four global classes.

(C) Classification of primary tumors and cell lines from each cancer type into global classes based on CFEs. Segment lengths are the percentage of samples (cell

lines or primary tumors) falling within each global class. For primary tumors, results are compared to published classifications (Ciriello et al., 2013) (top diagram),

and for cell lines, the comparison is with primary tumors from the same cancer type (bottom diagram). The classification of concordance is based on the identity of

the predominant class of CFEs.

See also Figure S3, Table S3, and Data S1.
eachmolecular data type (CGs, RACS, iCpGs, and gene expres-

sion) in explaining variation in drug response. For consistency,

all analyses used IC50 values. We carried out a pan-cancer, as

well as a cancer-specific, analysis (for those 18 cancer types

of sufficient sample size, n > 15 cell lines).

ANOVA Analysis Defines a Landscape of

Pharmacogenomic Interactions

For pan-cancer ANOVA, the set of CFEs included 267 CGs, 407

RACSs, and three gene fusions (BCR-ABL, EWSR1-FLI1, and

EWSR1-X). Overall, for the 265 compounds, we identified 688

statistically significant interactions between unique CFE-drug

pairs (p value < 10�3 at a false discovery rate [FDR] < 25%; Fig-
ure 4A), with 540 pan-cancer and 174 cancer-specific hits (Fig-

ure S4A; Table S4C). A subset of 262 CFE-drug pairs was addi-

tionally defined as large-effect interactions (Figure 4A). The

effect size was quantified through Glass deltas (Ds) and Cohen’s

D (CD) (Supplemental Experimental Procedures).

The majority of CFE-drug interactions was exclusively

identified in either the pan-cancer or cancer-specific analysis

(n = 662 of 688 significant interactions, 96%, and n = 254 of

262 significant large-effect interactions, 97%), with few overlap-

ping interactions (Figure 4A; Table S4C). The effect size was

frequently greater for the cancer-specific associations than for

pan-cancer associations (CD > 1 for 100% and 30% of hits,
Cell 166, 740–754, July 28, 2016 745



respectively) (Table S4D). A possible explanation for this obser-

vation could be that cancer-specific associations, with fewer cell

lines, require a larger effect size to be statistically significant.

However, downsampled pan-cancer analyses confirmed that

the increased effect size of cancer-specific associations is

greater than expected by downsampling alone (Figures S4B

and S4C; Supplemental Experimental Procedures). This indi-

cates that sensitivity to many drugs is modulated by genomic al-

terations in the context of a defined tissue lineage.

Overall, 233 of 674 (34%) CFEs were significantly associated

with the response to at least one compound, and more RACSs

(62%) were associated with response than were CGs (38%).

The importance of these two classes of CFEs varied by cancer

type and was related to their prevalence (Figures 3C and S4G).

We identified significant associations for the majority of com-

pounds (85%; n = 225 of 265). When compounds were classified

by their nominal target into 20 specific biological processes (Fig-

ure S4H; Table S1F), CFEs best explained sensitivity to com-

pounds targeting EGFR and ABL signaling, mitosis, and DNA

replication and least explained sensitivity to compounds target-

ing TOR, IGF1R, and WNT signaling. For the latter, alternative

non-genomic events may be the primary modulators of drug

sensitivity. The proportion of cytotoxic and targeted compounds

(Table S1F) associated with at least one significant large-

effect interaction was similar (63% and 60%, respectively). How-

ever, compared to targeted agents, the significant interactions

between CFEs and cytotoxics tended to be of a smaller

effect size (average CD 0.96 vs. 1.32) and less significant

(average –log10 p value 3.68 vs. 4.56).

We performed ANOVA on randomly downsampled subsets of

cell lines (500, 300, 150, and 60 cell lines) and evaluated our abil-

ity to retain the set of statistically significant associations. The

number of associations exponentially decreased as the number

of cell lines was reduced, with a loss of�80% of pan-cancer as-

sociations when using 500 cell lines (Figures S4D–S4F; Supple-

mental Experimental Procedures). This highlights the utility of us-

ing a large cell line collection to increase statistical power and to

preserve representation of diverse genotypes and histologies.

ANOVA Identifies Known and Novel Gene-Drug

Associations

Among the individual CFE-drug associations, we identified

many well-described pharmacogenomics relationships (Fig-

ure 4B). These included clinically relevant associations between

alterations in BRAF, ERBB2, EGFR, and the BCR-ABL fusion

gene and sensitivity to clinically approved drugs in defined tumor

types, as well as associations between KRAS, PDGFR, PIK3CA,

PTEN, CDKN2A, NRAS, TP53, and FLT3 with drugs that target

their respective protein products or pathways (Figure 4B; Table

S4C). Moreover, we observed a secondary T790M EGFR muta-

tion in lung adenocarcinoma (LUAD) and resistance to EGFR-tar-

geted therapies (Gefitinib and Afatinib) (Godin-Heymann et al.,

2008) (Figure 4D), as well as resistance of NRAS mutated mela-

noma patients to a BRAF inhibitor (Figure 4B; Table S4C) (Su

et al., 2012).

A pathway-centric view highlighted the number of interactions

between CFEs in cancer pathways (EGFR, ERK-MAPK, PI3K-

MTOR, and DNA repair and cell-cycle-related pathways) and

drugs targeting those CFEs (Figure S4I). For example, com-
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pounds targeting EGFR signaling showed potent activity in cells

with EGFR and ERBB2 alterations, but were ineffective in cells

with downstream alterations in ERK-MAPK signaling, such as

mutant RAS.

To explore the most important CFE-drug interactions, we

focused on 262 associations with a large effect on drug sensi-

tivity (p < 10�3, FDR < 25%, and D > 1, for both the cell line pop-

ulations included in the test) (Figure 4C; Table S4C). For

example, at the pan-cancer level, U2AF1 mutations associate

with sensitivity to multiple FLT3 inhibitors, such as AC220 (p =

8.33 10�8, CD = 2.5), Sorafenib (p = 3.043 10�6, CD = 2.8), Su-

nitinib (p = 5.6 3 10�5, CD = 2.5), and XL-184 (p = 1.3 3 10�4,

CD = 1.9); PTEN mutations associate with sensitivity to an AKT

inhibitor in COAD/READ (p = 3.5 3 10�6, CD = 2.4). The chemo-

therapeutic Mitomycin C is widely used to treat BLCA, and here,

we detect, in the BLCA specific analysis, a sensitizing interaction

with mutations in TP53 (p = 9.93 10�5, CD = 2.8) that are highly

prevalent in this cancer type. In LUSC cells, loss-of-function mu-

tations in the DNA methyltransferase MLL2 are associated with

sensitivity to the clinical anti-androgen Bicalutamide (p = 6.02

� 10�4, CD = 3); the BCL-2 inhibitor, ABT-263, shows activity

in COAD/READ cells that harbor focal amplifications of MET

(p = 1.02 3 10�4, CD = 2.8) or FOXA1/CRNKL1 (p = 1.31 3

10�4, CD = 2.2), events found in almost 60% of colorectal tu-

mors; and truncating mutations in the co-repressor of BCL6,

BCOR, statistically interact (p = 2.04 3 10�5, CD = 3.5) with

sensitivity to a PKC beta inhibitor in STAD (Figure 4D), and dele-

tions of a RACS (2q37.3) containing MTERFD2 and SNED1 is

associated with resistance to the HDAC inhibitor Vorinostat

(p = 5.4 3 10�7, CD = 4; Figure 4D) in OV cell lines.

Interestingly, 24 of the 262 associations are driven by RACSs

that do not contain known cancer genes (Tables S4C and S2D).

For these regions, the patterns of drug sensitivity may give clues

as to the likely contained driver cancer gene(s).

Logic Formulas of Drug Response Refine

Pharmacogenomic Modeling

Many genomic alterations occur together or in a mutually exclu-

sive way that suggests a biological function (Babur et al., 2015).

We hypothesized that combinations of CFEs could, in some con-

texts, improve our ability to explain variation in drug sensitivity.

We employed a computational approach termed ‘‘logic optimi-

zation for binary input to continuous output’’ (LOBICO) to find

the optimal logic model combining CFEs to explain the IC50

values for a drug, for example, ‘‘ifRAS orRAFmutated, then sen-

sitive to MEK inhibition’’ (Knijnenburg et al., 2016). LOBICO bi-

narizes the IC50s, labeling cell lines as sensitive or resistant,

and uses these together with the continuous IC50s to find optimal

models (Table S5C) (Supplemental Experimental Procedures).

We employed 5-fold cross-validation (CV) to select the appro-

priate model complexity from a set of eight possible models,

ranging from single CFE predictor models to complexmulti-input

models with up to four CFEs. We required solutions to have

specificity greater than 80%. The input features included the

CGs, RACSs, gene fusions, and binarized pathway activity

scores derived from the basal gene expression profiles of the

cell lines (Figure S5A; Tables S5A, S5B, and S5D). The latter is

based on 11 transcriptional signatures of pathway activation

(Parikh et al., 2010) (Table S5B; Supplemental Experimental
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teractions are divided into those identified in a single or multiple cancer-specific analyses.

(B) A summary of established pharmacogenomic interactions detected in this analysis including a subset of clinically approved markers. The total number of
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indicated.
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Procedures). LOBICO was executed for each drug separately

utilizing pan-cancer and cancer-specific molecular datasets.

This led to the inference of 1,112 logic models (Table S5E).

In the pan-cancer dataset we found that for 69% (182 of 265)

of the drugs, the IC50s were better explained than expected by

chance (p value < 0.05 and FDR < 5%). Across the cancer-spe-

cific datasets, on average, 24% of the drugs were explained by

the inferred logic models (Figure 5A). We termed these logic

models (182 from the pan-cancer dataset and 208 from the 18

cancer-specific datasets) ‘‘predictive models’’. When consid-

ered together, the pan-cancer and cancer-specific LOBICO an-

alyses identified predictive models for 208 out of 265 (78%)

drugs. Importantly, for 85% of the 390 predictive models, a

multi-input model achieved better performance than did the

best single-predictor model (Figure 5B). Although the pan-can-

cer dataset produced the largest number of predictive models,

the CV error was consistently higher than for cancer-specific

datasets (Figure S5B). This is in agreement with the ANOVA

analysis, where larger effect sizes were observed for the can-

cer-specific datasets. The response to drugs that target the

p53 or ERK-MAPK pathway were especially well-predicted by

LOBICO (Figure S5C).

We observed that CGs had the largest role in explaining drug

response, followed by RACSs and the pathway activities derived

from gene expression (Figure S5A; Supplemental Experimental

Procedures). The small number of pathway signatures had a

disproportionately large effect in the logic models, showing

that basal pathway activation scores provide relevant informa-

tion to predict drug response beyond the genomic CFEs (Cost-

ello et al., 2014) (Figure S5D).

LOBICO uncovered many known, as well as novel, associa-

tions (Table S5F). Figure 5C depicts a selection of particularly

strong and consistent ‘‘and/or’’ combinations found for clinically

approved drugs. For example, in the pan-cancer dataset, the

‘‘or’’ combination of KRAS or BRAF improved the precision

and recall compared to single predictor models to explain cell

line sensitivity to a number of MEK and RAF inhibitors (e.g., Tra-

metinib in Figures 5C and 5D).

In general, the ‘‘or’’ combinations led to models with higher

recall (Figure 5C, right quadrants) as compared with the single-

predictor model. For example, HNSC cell lines that have an

EGFR amplification or a SMAD4 mutation account for 45%

(10 out of 22) of cell lines sensitive to the ERRB2/EGFR inhibitor

Afatinib, whereas considering only the EGFR amplified cell lines

accounts for only 32% (7 out of 22) of the sensitive cell lines

(Figure 5E). Conversely, ‘‘and’’ combinations led to models with

higher precision (Figure 5C, left quadrants). For example, BRCA

cell lines that lack a deletion of the FAT1/IRF2 locus and are

TP53 mutant show increased sensitivity to the ERRB2/EGFR in-

hibitor Lapatinib. This is achieved at higher precision (57%

instead of 45% for the single predictor model), but at a lower
(C) Volcano plot with effect size (x axis) and significance (y axis) of large-effect can

nificantCFE-drug interaction.Circle size is proportional to thenumber of alteredcel

drug name, target (italics), and name of the associated CFE (bold).

(D) Examples of cancer-specific pharmacogenomic interactions identified by our s

co-incident resistance-associated EGFR T790M mutation is labeled.

See also Figure S4 and Table S4.
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recall (80% instead of 100%) (Figure 5F). Collectively, LOBICO

analysis highlights the importance of considering combinations

of oncogenic alterations as biomarkers for drug response.

Validation of Pharmacogenomic Modeling Results on

Independent Datasets

We sought to validate our pharmacogenomic models using

independent drug sensitivity datasets from the Cancer Cell

Line Encyclopedia (CCLE) (Barretina et al., 2012) and the Can-

cer Therapeutics Response Portal (CTRP; second version)

(Seashore-Ludlow et al., 2015). This analysis was for necessity

restricted to only those compounds and cell lines shared with

our own study (hereafter referred to as GDSC). The shared set

consisted of 466 cell lines and 76 compounds from the CTRP

study (Tables S4I–S4K) and 389 cell lines and 15 compounds

from the CCLE study (Tables S4E–S4G; Supplemental Experi-

mental Procedures). Validation was performed using IC50 values

from the GDSC and CCLE studies and AUC values from the

CTRP study (where IC50 values were not reported).

We performed ANOVA on the overlapping set of cell lines/

compounds. We validated 53% (19 of 36 on CTRP) and 86%

(6 of 7 on CCLE) of the testable sensitivity associations identi-

fied in the GDSC, and 21% (6 of 29 on CTRP) and 0% (0 of 7 on

CCLE) of testable resistance associations (p < 0.05, Fisher’s

exact test CTRP: p = 8.1 3 10�9; CCLE: p = 0.01; Figures

S4J and S4K; Tables S4H and S4L; Supplemental Experimental

Procedures). A significant Pearson correlation of the CFE-drug

interaction significance was observed between the GDSC data-

set and the other two datasets (R = 0.86 for CTRP and R = 0.86

for CCLE; Figures S4J and S4K). Similarly, using LOBICO, we

validated 44% (17 of 39) of testable models using the CTRP,

including both single and multi-input models, and observed a

significant Pearson correlation of the interaction significance

between the two datasets (R = 0.96; Figures S5E and S5F;

Data S1C). Thus, even within the relatively limited set of

overlapping drugs and cell lines, resulting in reduced statis-

tical power, we observed reasonable-to-good rates of valida-

tion for the set of pharmacogenomic interactions identified

in our study, including a number of novel associations. Com-

plete summaries of these comparisons are provided in Tables

S4E–S4L and S5G, Data S1C, and Supplemental Experimental

Procedures.

Contribution of Different Molecular Data Types in

Predicting Drug Response

To investigate the power of different combinations of molecular

data to predict drug response, we built linear and non-linear

models of drug sensitivity (elastic net [EN] regression and

Random Forests [Costello et al., 2014]). As input features, we

used CGs, RACSs, iCpGs, and gene expression data.

Here, we refer to ENmodels using IC50 values (Table S4A), but

very similar results were obtained with Random Forests (Fig-

ure S6F; Table S6A). We assessed the predictive power of
cer-specific pharmacogenomic interactions. Each circle corresponds to a sig-

l lines, and the color indicates cancer type. A subset of interactions is labeledwith

ystematic ANOVA. Each circle represents the IC50 of an individual cell line. The
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Figure 5. Logic Models of CFEs Explain Drug Sensitivity

(A) The number of predictive LOBICO models from the pan-cancer and cancer-specific analyses. The number of cell lines for each cancer type is given in

brackets.

(B) Optimal model complexity for each of the predictive logic models.

(C) Strong AND/OR model combinations involving clinically approved drugs from the pan-cancer and cancer-specific analyses. Each arrow goes from the

precision (x axis) and recall (y axis) of the single-predictor model to that of the logic combination. The arrow color reflects cancer type, and drug names and

nominal targets (italics) are shown.

(D) Distribution of IC50 values of all cell lines (gray) in response to Trametinib with respect to the KRAS mutant single-predictor model (red line) and the KRAS OR

BRAF mutant combination (blue line). The dashed line is the IC50 threshold used to classify cell lines as sensitive and resistant. The inset table shows the number

of cell lines classified as sensitive or resistant for each model and the associated precision (pr.) and recall (re.).

(E) HNSC cell lines response to Afatinib with respect to EGFR amplification and the combination of EGFR amplification OR a SMAD4 mutation.

(F) BRCA cell lines response to Lapatinib with respect to lack of the FAT1/IRF2 deletion and the logical TP53 mutant AND lack of the FAT1/IRF2 deletion

combination.

See also Figure S5, Table S5, and Data S1.
each model using the Pearson correlation coefficient (R) of

observed versus predicted IC50 values. For each of the 265 com-

pounds, we built pan-cancer and cancer-specific models (for

18 cancer types) and considered a model with a corresponding

Rpan­cancerR0:21 and Rcancer­specificR0:25 as predictive (Figures

S6G and S6H; Supplemental Experimental Procedures).

In a pan-cancer analysis, the most predictive data type was

gene expression, closely followed by the tissue of origin of the
cell lines (Figure 6A). By comparison, genomic features (CG mu-

tations and RACSs alterations) performed poorly. The predictive

power of gene expression and tissue type was strongly corre-

lated, while RACSs and CGs are less correlated with the tissue

type (Figure S6A). This is consistent with the tissue specificity

of gene expression (Ross et al., 2000).

Next, we compared themost predictive data types in pan-can-

cer versus cancer-specific analyses (Figures 6B and 6C). For
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Figure 6. Predictive Ability of Combinations of Molecular Data Types

(A) Predictive performances of individual pan-cancer pharmacogenomic models using elastic net modeling and the indicated single data types. Selected outlier

predictive models are labeled.

(B) The number of molecular data types included in the best-performing models (lead models) across the pan-cancer and cancer-specific analyses. The best-

performing models use combinations of multiple data types. Absolute counts of best performing models are given.

(C) Absolute counts of lead models from the pan-cancer and cancer-specific analyses and the number of molecular data types used in the models.

(D) A heat map of the percentage of leadmodels identified in the pan-cancer and cancer-specific analyses incorporating different combinations of molecular data

types.

(E) Absolute count of leadmodels identified in pan-cancer and cancer-specific analyses incorporating different combinations of molecular data types. Data types

are ordered from most (top) to least (bottom) predictive in the cancer-specific analysis.

See also Figure S6 and Table S6.
each drug, we identified the best-performing combination of

data types and the corresponding model, referred to as the

‘‘lead model’’. Notably, paired molecular data types contributed

to the most lead models in both the pan-cancer (�42% of all

models) and the cancer-specific analyses (�45% for all cancer

types) (Figures 4B and 4C). In the pan-cancer analysis, all of

the lead models use gene expression data (Figures 6D and

6E), but for 211 drugs (�86%), the models are improved by

including methylation, RACSs, CGs, or any combination of those

additional data types. In addition, we identified 379 predictive

(non-lead) models (�17%) independent of gene expression (Fig-

ures S6B�S6E).

In a cancer-specific analysis, the majority of lead models are

based solely on genomics features (Figures 6D and 6E). For

120 cases (�38%) the lead model is based on genomics alone

(CGs and RACS). We found that genomics in combination with

methylation provided an additional 117 lead models (�37%),

whereas genomics in combination with gene expression contrib-

uted 19 (�6%). The remaining lead models use methylation

alone (�7%), gene expression alone (�3%), or a combination

of genomic, epigenetic, and transcriptomic features (12%).

Therefore, in the context of a cancer-specific analysis, �74%

(237 of 319) of lead models were explained by genomics, either

alone or when combined with methylation (Figures 6D and 6E).
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DISCUSSION

Constructing a Pharmacogenomics Resource
Cancer cell lines are important tools for drug development. Here,

we have extended previous efforts with the systematic expan-

sion of the pharmacological, genomic, transcriptomic, and

epigenetic characterization of 1,001 human cancer cell lines.

These datasets can be investigated through the COSMIC and

Genomics of Drug Sensitivity in Cancer Web portal (http://

www.cancerrxgene.org). To the best of our knowledge, this is

the largest and most extensively characterized panel of cancer

cell lines and should enable a broad range of studies linking

genotypes with cellular phenotypes.

Our analysis of >11,000 patient tumor samples and the subse-

quent superimposing of salient cancer features on cell lines ex-

emplifies how large-scale cancer sequencing can be used to

empower biological research and maximizes the potential clin-

ical relevance of the pharmacological models reported.

The majority of CFEs identified from a broad range of tumor

types is captured within a large cell line panel and often at a fre-

quency similar to that observed in patient cohorts. However, the

picture is far from complete; many CFEs occurring at low to

moderate frequency (2%–5%) are represented by a single cell

line or not at all, and coverage by cancer type is variable. As

http://www.cancerrxgene.org
http://www.cancerrxgene.org
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we enter an era of precision cancer medicine, where many drugs

are active in small molecularly defined subgroups of patients

(e.g., only 3%–7% of lung cancer patients harbor the drug sensi-

tizing EML4-ALK gene fusion [Soda et al., 2007]), the scarcity of

models for many cancer genotypes and tissues is a limitation.

New cell culturing technologies enable derivation of patient cell

lines with high efficiency and thus make derivation of a larger

set of cell lines encompassing the molecular diversity of cancer

a realistic possibility (Liu et al., 2012; Sato et al., 2011).

Pharmacogenomic Models of Drug Sensitivity
Pharmacogenomic screens in cancer cell lines are an unbiased

discovery approach for putative markers of drug sensitivity.

We identified a wealth of molecular markers of drug sensitivity,

including completely novel associations not easily explained

with our current knowledge. With appropriate validation and

follow-up studies, these putative biomarkers may aid patient

stratification and help to explain the heterogeneity of clinical

responses.

Going beyond single gene-drug interactions, ‘‘logic’’ combi-

nations of CFEs consistently perform better than single events

in sensitivity prediction. Clinical support for this comes from

the observation that BRAF mutant melanoma patients treated

with BRAF inhibitors show heterogeneity of response that may

be explained by the presence of additional molecular alterations

(Chapman et al., 2011). Our analyses suggest that clinical

studies in cancer patients should be designed to enable

combinations of genomic alterations to be detected, which has

implications for both trial size and the statistical approaches

employed.

We validated our pharmacogenomic models using indepen-

dent datasets from the CCLE and CTRP. Consistent with previ-

ous reports, this demonstrated good consistency in the set of

markers identifiable across these studies (Cancer Cell Line Ency-

clopedia Consortium, 2015) and lends additional support to the

results presented here. However, our ability to validate some

pharmacogenomic associations was restricted by the limited

number of overlapping cell lines and compounds between these

studies. Furthermore, the consistency between datasets is not

perfect, and efforts toward standardization to reduce methodo-

logical and biological differences across the different studies

are likely to improve future correlation between datasets.

Glimpses of a Precision Medicine Landscape
For many of our pharmacological models, the defining CFE is

present in clinical populations at a frequency that would make

testing in a clinical trial setting feasible (Figure 7). For example,

the alkylating agent Temozolamide (used to treat glioblastoma

multiforme) shows activity in MYC amplified colorectal cancer

lines (present in 33% of primary tumors) (Figure 7A). Overall,

we found that a median of 50% of primary tumor samples harbor
Figure 7. A Precision Medicine Landscape

(A) Percentages of primary tumor samples for each cancer type harboring a sensiti

all compounds.

(B) Percentages of primary tumors whose genomic features satisfy the logic mod

right of the bars.

See also Table S7.
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at least one CFE, or logic combination of CFEs, associated with

increased drug response; ranging from 0.63% (OV) to 83.61%

(COAD/READ) (Figure 7; Tables S7A–S7C; Supplemental Exper-

imental Procedures). This suggests that there are likely to be

a number of molecular subtypes within many cancers that,

following appropriate validation, could be tested in the clinical

trial setting using these stratifications for treatment selection.

Using machine learning, we determined that within each spe-

cific cancer type, genomic features (either driver mutations or

copy number alterations) generated the most predictive models,

with the addition of methylation data further improving our

models. While informative in the pan-cancer setting, baseline

gene expression data was less informative in the more clinically

relevant tissue-specific setting. Prioritizing the design of diag-

nostics that deliver driver mutations, copy number alterations,

and DNA methylation profiles might be the most cost effective

means in the short-term to stratify patients for cancer treatment.

Conclusions
The clinical development of molecularly targeted cancer thera-

pies remains a formidable challenge. Our current analysis is

restricted by the availability of patient genomic datasets, the

cell lines and compounds screened, and methodological and

biological variables, as well as the inherent limitation associated

with the use of in vitro cancer cell lines. Nonetheless, our results

represent a comprehensive attempt to describe the landscape of

clinically relevant pharmacogenomics interactions in cellular

models of cancer, complementing previous efforts (Barretina

et al., 2012; Basu et al., 2013; Garnett et al., 2012; Seashore-Lu-

dlow et al., 2015). The data resource and analyses described

here should enable the matching of drug response with onco-

genic alterations to provide insights into cancer biology and to

accelerate the development of patient stratification strategies

for clinical trial design.

EXPERIMENTAL PROCEDURES

Cancer Cell Line Characterization

Genomic data for a panel of 1,025 genetically unique human cell lines were

assembled from the COSMIC database. 1,001 cell lines were included in this

study (Table S1E). Variants and copy number alterations were identified as

described in the Supplemental Experimental Procedures. Microsatellite insta-

bility data were assembled as detailed in the Supplemental Experimental

Procedures. Gene fusions from a subset cell lines (�700) were identified by tar-

geted PCR sequencing or split probe fluorescence in situ hybridization (FISH)

analysis (Table S2C).

Variant Identification in Tumors

Variant data from sequencing of 6,815 tumor normal sample pairs derived from

48 different sequencing studies were compiled (Rubio-Perez et al., 2015).

To aid in the analysis, the tumor data were reannotated using a pipeline consis-

tent with the COSMIC database (Vagrent: https://zenodo.org/record/16732#.

VbeVY2RViko).
vity marker to a given compound and the accumulate percentage of patients for

el for sensitivity for a given drug. Corresponding logic circuits are shown to the

https://zenodo.org/record/16732#.VbeVY2RViko
https://zenodo.org/record/16732#.VbeVY2RViko


Methylation Data

For primary tumors, raw data for 6,035 methylation samples, covering 18 tu-

mor types, were downloaded from the TCGA data portal. For the cell lines,

data were generated in-house as described in the Supplemental Experimental

Procedures. In both cases, Infinium HumanMethylation450 BeadChip arrays

were preprocessed using the R Bioconductor package Minfi. Only CpG site

probes falling on the promoter region of the known genes were considered,

i.e., TSS1500, TSS200, 50 UTR, and 1st exon. Probes containing SNPs and

non-specific probes, falling on sex chromosomes, and not associated with a

gene were discarded. Methylation beta values of CpG islands were averaged

across CpG sites.

Identification of Cancer Functional Events

The selection of cancer-driver genes (together with the variant recurrence

filter) of the recurrently copy-number-altered chromosomal regions and

the informative CpG islands is detailed in the Supplemental Experimental

Procedures.

Gene Expression Data

Cell line pellets collected during exponential growth in RPMI or DMEM/F12

were lysed with TRIzol (Life Technologies) and stored at �70�C. Following

chloroform extraction, total RNA was isolated using the RNeasy Mini Kit

(QIAGEN). DNase digestion was followed by the RNAClean Kit (Agencourt

Bioscience). RNA integrity was confirmed on a Bioanalyzer 2100 (Agilent Tech-

nologies) prior to labeling using 30 IVT Express (Affymetrix). Microarray analysis

was performed as described in the Supplemental Experimental Procedures.

Cell Line versus Tumor Comparisons

All analyses evaluating the extent to which cell lines resemble primary tumors

are detailed in the Supplemental Experimental Procedures.

Cell Viability Assays

Experimental protocols used for compound screening are detailed in the

Supplemental Experimental Procedures. Effects on cell viability were

measured, and a curve-fitting algorithm was applied to this raw dataset to

derive a multiparameter description of the drug response (half maximal

inhibitory concentration (IC50),and area under the curve [AUC]) through a

multilevel mixed model (Vis et al., 2016) (Supplemental Experimental

Procedures).

Statistical Models of Drug Response

For each drug an ANOVAmodel was fitted to correlate drug response with the

status of Cancer Functional Events (CFEs), as described inGarnett et al. (2012),

implemented in GDSCtools (http//gdsctools.readthedocs.io) and detailed in

the the Supplemental Experimental Procedures. The downsampling ANOVA

simulation studies are detailed in the Supplemental Experimental Procedures.

We applied the LOBICO (Knijnenburg et al., 2016) framework as detailed in the

Supplemental Experimental Procedures. Machine learning models were

computed as detailed in the Supplemental Experimental Procedures.

ACCESSION NUMBERS

The accession numbers for the sequencing/copy number, transcriptional,

and methylation data reported in this paper are, respectively, EGA:

EGAS00001000978, GEO: GSE68379, and ArrayExpress: E-MTAB-3610.
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Babur, Ö., Gönen, M., Aksoy, B.A., Schultz, N., Ciriello, G., Sander, C., and

Demir, E. (2015). Systematic identification of cancer driving signaling path-

ways based onmutual exclusivity of genomic alterations. Genome Biol. 16, 45.

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim,

S., Wilson, C.J., Lehár, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer

Cell Line Encyclopedia enables predictive modelling of anticancer drug sensi-

tivity. Nature 483, 603–607.

Basu, A., Bodycombe, N.E., Cheah, J.H., Price, E.V., Liu, K., Schaefer, G.I.,

Ebright, R.Y., Stewart, M.L., Ito, D., Wang, S., et al. (2013). An interactive

resource to identify cancer genetic and lineage dependencies targeted by

small molecules. Cell 154, 1151–1161.

Cancer Cell Line Encyclopedia Consortium; Genomics of Drug Sensitivity in

Cancer Consortium (2015). Pharmacogenomic agreement between two can-

cer cell line data sets. Nature 528, 84–87.

Chapman, P.B., Hauschild, A., Robert, C., Haanen, J.B., Ascierto, P., Larkin,

J., Dummer, R., Garbe, C., Testori, A., Maio, M., et al.; BRIM-3 Study Group

(2011). Improved survival with vemurafenib in melanoma with BRAF V600E

mutation. N. Engl. J. Med. 364, 2507–2516.
Cell 166, 740–754, July 28, 2016 753

http://http//gdsctools.readthedocs.io
http://dx.doi.org/10.1016/j.cell.2016.06.017
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref1
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref1
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref1
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref2
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref2
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref2
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref2
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref3
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref3
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref3
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref3
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref4
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref4
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref4
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref5
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref5
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref5
http://refhub.elsevier.com/S0092-8674(16)30746-2/sref5


Ciriello, G., Miller, M.L., Aksoy, B.A., Senbabaoglu, Y., Schultz, N., and

Sander, C. (2013). Emerging landscape of oncogenic signatures across human

cancers. Nat. Genet. 45, 1127–1133.

Cook, D., Brown, D., Alexander, R., March, R., Morgan, P., Satterthwaite, G.,

and Pangalos, M.N. (2014). Lessons learned from the fate of AstraZeneca’s

drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13,

419–431.

Costello, J.C., Heiser, L.M., Georgii, E., Gönen, M., Menden, M.P., Wang, N.J.,

Bansal, M., Ammad-ud-din, M., Hintsanen, P., Khan, S.A., et al.; NCI DREAM

Community (2014). A community effort to assess and improve drug sensitivity

prediction algorithms. Nat. Biotechnol. 32, 1202–1212.

Garnett, M.J., Edelman, E.J., Heidorn, S.J., Greenman, C.D., Dastur, A., Lau,

K.W., Greninger, P., Thompson, I.R., Luo, X., Soares, J., et al. (2012). System-

atic identification of genomicmarkers of drug sensitivity in cancer cells. Nature

483, 570–575.

Godin-Heymann, N., Ulkus, L., Brannigan, B.W.,McDermott, U., Lamb, J., Ma-

heswaran, S., Settleman, J., and Haber, D.A. (2008). The T790M ‘‘gatekeeper’’

mutation in EGFR mediates resistance to low concentrations of an irreversible

EGFR inhibitor. Mol. Cancer Ther. 7, 874–879.

Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100,

57–70.

Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang,

Q., McMichael, J.F., Wyczalkowski, M.A., et al. (2013). Mutational landscape

and significance across 12 major cancer types. Nature 502, 333–339.

Knijnenburg, T., Klau, G., Iorio, F., Garnett, M., McDermott, U., Shmulevich, I.,

and Wessels, L. (2016). Logic models to predict continuous outputs based on

binary inputs with an application to personalized cancer therapy. bioRxiv, doi:

http://dx.doi.org/10.1101/036970.

Lawrence, M.S., Stojanov, P., Polak, P., Kryukov, G.V., Cibulskis, K., Siva-

chenko, A., Carter, S.L., Stewart, C., Mermel, C.H., Roberts, S.A., et al.

(2013). Mutational heterogeneity in cancer and the search for new cancer-

associated genes. Nature 499, 214–218.

Lawrence, M.S., Stojanov, P., Mermel, C.H., Robinson, J.T., Garraway, L.A.,

Golub, T.R., Meyerson, M., Gabriel, S.B., Lander, E.S., and Getz, G. (2014).

Discovery and saturation analysis of cancer genes across 21 tumour types.

Nature 505, 495–501.

Liu, X., Ory, V., Chapman, S., Yuan, H., Albanese, C., Kallakury, B., Timofeeva,

O.A., Nealon, C., Dakic, A., Simic, V., et al. (2012). ROCK inhibitor and feeder

cells induce the conditional reprogramming of epithelial cells. Am. J. Pathol.

180, 599–607.

Mok, T.S., Wu, Y.-L., Thongprasert, S., Yang, C.-H., Chu, D.-T., Saijo, N., Sun-

paweravong, P., Han, B., Margono, B., Ichinose, Y., et al. (2009). Gefitinib or

carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361,

947–957.

Nelson, M.R., Tipney, H., Painter, J.L., Shen, J., Nicoletti, P., Shen, Y., Flora-

tos, A., Sham, P.C., Li, M.J., Wang, J., et al. (2015). The support of human ge-

netic evidence for approved drug indications. Nat. Genet. 47, 856–860.

Parikh, J.R., Klinger, B., Xia, Y., Marto, J.A., and Blüthgen, N. (2010). Discov-
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