1,171 research outputs found

    Improving the prediction of an atmospheric chemistry transport model using gradient boosted regression trees

    Get PDF
    Predictions from process-based models of environmental systems are biased, due to uncertainties in their inputs and parameterisations, reducing their utility. We develop a predictor for the bias in tropospheric ozone (a key pollutant) calculated by an atmospheric chemistry transport model (GEOS-Chem), based on outputs from the model and observations of ozone from both the surface (EPA, EMEP and GAW) and the ozone-sonde networks. We train a gradient-boosted decision tree algorithm (XGBoost) to predict model bias, with model and observational data for 2010–2015, and then test the approach using the years 2016–2017. We show that the bias-corrected model performs significantly better than the uncorrected model. The root mean square error is reduced from from 16.21 ppb to 7.48 ppb, the normalised mean bias is reduced from 0.28 to −0.04, and the Pearson's R is increased from 0.479 to 0.841. Comparisons with observations from the NASA ATom flights (which were not included in the training) also show improvements but to a smaller extent reducing the RMSE from 12.11 ppb to 10.50 ppb, the NMB from 0.08 to 0.06 and increasing the Pearson's R from 0.761 to 0.792. We attribute the smaller improvements to the lack of routine observational constraints of the remote troposphere. We explore the choice of predictor (bias prediction versus direct prediction) and conclude both may have utility. We show that the method is robust to variations in the volume of training data, with approximately a year of data needed to produce useful performance. Data denial experiments (removing observational sites from the algorithm training) shows that information from one location (for example Europe) can reduce the model bias over other locations (for example North America) which might provide insights into the processes controlling the model bias. We conclude that combining machine learning approaches with process based models may provide a useful tool for improving performance of air quality forecasts or to provide enhanced assessments of the impact of pollutants on human and ecosystem health, and may have utility in other environmental applications

    Halogen chemistry reduces tropospheric O3 radiative forcing

    Get PDF
    Tropospheric ozone (O3) is a global warming gas, however the lack of a firm observational record since the preindustrial period means that estimates of its radiative forcing (RFTO3) rely on model calculations. Recent observational evidence shows that halogens are pervasive in the troposphere and need to be represented in chemistry-transport models for an accurate simulation of present-day O3. Using the GEOS-Chem model we show that tropospheric halogen chemistry is more active in the present-day than in the pre-industrial. This is due to increased oceanic iodine emissions driven by increased surface O3, higher anthropogenic emissions of bromo-carbons and an increased flux of bromine from the stratosphere. We calculate pre-industrial to present-day increases in the tropospheric O3 burden of 113 Tg without halogens but only 95 Tg with, leading to a reduction in RFTO3 from 0.432 to 0.366 W m−2. We attribute ~ 40 % of this reduction to the ocean-atmosphere iodine feedback, ~ 30 % to increased anthropogenic halogens in the troposphere and ~ 30 % to increased bromine flux from the stratosphere. This reduction of RFTO3 (0.066 W m−2) is greater than that from stratospheric ozone (~ 0.05 W m−2). Estimates of RFTO3 that fail to consider halogen chemistry are likely overestimates (~ 20 %)

    The effect of whisker movement on radial distanceestimation: A case study in comparative robotics

    Get PDF
    Whisker movement has been shown to be under active control in certain specialistanimals such as rats and mice. Though this whisker movement is well characterized,the role and effect of this movement on subsequent sensing is poorly understood. Onemethod for investigating this phenomena is to generate artificial whisker deflections withrobotic hardware under different movement conditions. A limitation of this approachis that assumptions must be made in the design of any artificial whisker actuators,which will impose certain restrictions on the whisker-object interaction. In this paperwe present three robotic whisker platforms, each with different mechanical whiskerproperties and actuation mechanisms. A feature-based classifier is used to simultaneouslydiscriminate radial distance to contact and contact speed for the first time. We showthat whisker-object contact speed predictably affects deflection magnitudes, invariantof whisker material or whisker movement trajectory. We propose that rodent whiskercontrol allows the animal to improve sensing accuracy by regulating contact speed inducedtouch-to-touch variability

    Interferences in photolytic NO2 measurements : explanation for an apparent missing oxidant?

    Get PDF
    Measurement of NO2 at low concentrations is non-trivial. A variety of techniques exist, with the conversion of NO2 into NO followed by chemiluminescent detection of NO be- ing prevalent. Historically this conversion has used a catalytic approach (Molybdenum); however this has been plagued with interferences. More recently, photolytic conversion based on UV-LED irradiation of a reaction cell has been used. Although this appears to be robust there have been a range of observations in low NOx environments which have measured higher NO2 concentrations than might be expected from steady state analysis of simultaneously measured NO, O3, JNO2 etc. A range of explanations exist in the literature most of which focus on an unknown and unmeasured “compound X ” that is able to convert NO to NO2 selectively. Here we explore in the laboratory the interference on the photolytic NO2 measurements from the thermal decomposition of peroxyacetyl nitrate (PAN) within the photolysis cell. We find that approximately 5 % of the PAN decomposes within the instrument providing a potentially significant interference. We parameterize the decomposition in terms of the temperature of the light source, the ambient temperature and a mixing timescale (∼ 0.4 s for our instrument) and expand the parametric analysis to other atmospheric compounds that decompose readily to NO2 (HO2NO2, N2O5, CH3O2NO2, IONO2, BrONO2, Higher PANs). We ap- ply these parameters to the output of a global atmospheric model (GEOS-Chem) to investigate the global impact of this interference on (1) the NO2 measurements and (2) the NO2 : NO ratio i.e. the Leighton relationship. We find that there are significant in- terferences in cold regions with low NOx concentrations such as Antarctic, the remote Southern Hemisphere and the upper troposphere. Although this interference is likely instrument specific, it appears that the thermal decomposition of NO2 within the instrument’s photolysis cell may give an explanation for the anomalously high NO2 that has been reported in remote regions, and would reconcile measured and modelled NO2 to NO ratios without having to invoke novel chemistry. Better instrument characterization, coupled to instrumental designs which reduce the heating within the cell seem likely to minimize the interference in the future, thus simplifying interpretation of data from remote locations

    Modeling lightning-NOx chemistry at sub-grid scale in a global chemical transport model

    Get PDF
    For the first time, a plume-in-grid approach is implemented in a chemical transport model (CTM) to parameterize the effects of the non-linear reactions occurring within high concentrated NOx plumes from lightning NOx emissions (LNOx) in the upper troposphere. It is characterized by a set of parameters including the plume lifetime, the effective reaction rate constant related to NOx-O3 chemical interactions and the fractions of NOx conversion into HNO3 within the plume. Parameter estimates were made using the DSMACC chemical box model, simple plume dispersion simulations and the mesoscale 3-D Meso-NH model. In order to assess the impact of the LNOx plume approach on the NOx and O3 distributions at large scale, simulations for the year 2006 were performed using the GEOS-Chem global model with a horizontal resolution of 2° × 2.5°. The implementation of the LNOx parameterization implies NOx and O3 decrease at large scale over the region characterized by a strong lightning activity (up to 25 and 8 %, respectively, over Central Africa in July) and a relative increase downwind of LNOx emissions (up to 18 and 2 % for NOx and O3, respectively, in July) are derived. The calculated variability of NOx and O3 mixing ratios around the mean value according to the known uncertainties on the parameter estimates is maximum over continental tropical regions with ΔNOx [−33.1; +29.7] ppt and ΔO3 [−1.56; +2.16] ppb, in January, and ΔNOx [−14.3; +21] ppt and ΔO3 [−1.18; +1.93] ppb, in July, mainly depending on the determination of the diffusion properties of the atmosphere and the initial NO mixing ratio injected by lightning. This approach allows (i) to reproduce a more realistic lightning NOx chemistry leading to better NOx and O3 distributions at the large scale and (ii) focus on other improvements to reduce remaining uncertainties from processes related to NOx chemistry in CTM

    Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury

    Get PDF
    Aircraft and satellite observations indicate the presence of ppt (ppt ≡ pmol/mol) levels of BrO in the free troposphere with important implications for the tropospheric budgets of ozone, OH, and mercury. We can reproduce these observations with the GEOS-Chem global tropospheric chemistry model by including a broader consideration of multiphase halogen (Br–Cl) chemistry than has been done in the past. Important reactions for regenerating BrO from its non-radical reservoirs include HOBr+Br−/Cl− in both aerosols and clouds, and oxidation of Br− by ClNO3 and ozone. Most tropospheric BrO in the model is in the free troposphere, consistent with observations, and originates mainly from the photolysis and oxidation of ocean-emitted CHBr3. Stratospheric input is also important in the upper troposphere. Including production of gas phase inorganic bromine from debromination of acidified sea salt aerosol increases free tropospheric Bry by about 30 %. We find HOBr to be the dominant gas-phase reservoir of inorganic bromine. Halogen (Br-Cl) radical chemistry as implemented here in GEOS-Chem drives 14 % and 11 % decreases in the global burdens of tropospheric ozone and OH, respectively, a 16 % increase in the atmospheric lifetime of methane, and an atmospheric lifetime of 6 months for elemental mercury. The dominant mechanism for the Br-Cl driven tropospheric ozone decrease is oxidation of NOx by formation and hydrolysis of BrNO3 and ClNO3

    Direct measurements of OH and other product yields from the HO2 + CH3C(O)O2 reaction

    Get PDF
    The reaction CH3C(O)O2 +HO2 → CH3C(O)OOH+O2 (Reaction R5a), CH3C(O)OH + O3 (Reaction R5b), CH3 + CO2 + OH + O2 (Reaction R5c) was studied in a series of experiments conducted at 1000 mbar and (293±2) K in the HIRAC simulation chamber. For the first time, products, (CH3C(O)OOH, CH3C(O)OH, O3 and OH) from all three branching pathways of the reaction have been detected directly and simultaneously. Measurements of radical precursors (CH3OH, CH3CHO), HO2 and some secondary products HCHO and HCOOH further constrained the system. Fitting a comprehensive model to the experimental data, obtained over a range of conditions, determined the branching ratios α(R5a) = 0.37±0.10, α(R5b) = 0.12±0.04 and α(R5c) = 0.51±0.12 (errors at 2σ level). Improved measurement/model agreement was achieved using k(R5) = (2.4±0.4)×10−11 cm3 molecule−1 s−1, which is within the large uncertainty of the current IUPAC and JPL recommended rate coefficients for the title reaction. The rate coefficient and branching ratios are in good agreement with a recent study performed by Groß et al. (2014b); taken together, these two studies show that the rate of OH regeneration through Reaction (R5) is more rapid than previously thought. GEOS-Chem has been used to assess the implications of the revised rate coefficients and branching ratios; the modelling shows an enhancement of up to 5 % in OH concentrations in tropical rainforest areas and increases of up to 10 % at altitudes of 6–8 km above the equator, compared to calculations based on the IUPAC recommended rate coefficient and yield. The enhanced rate of acetylperoxy consumption significantly reduces PAN in remote regions (up to 30 %) with commensurate reductions in background NOx

    Study Protocol for the COVID-19 Pandemic Adjustment Survey (CPAS): A Longitudinal Study of Australian Parents of a Child 0–18 Years

    Get PDF
    Background: The COVID-19 pandemic presents significant risks to the mental health and wellbeing of Australian families. Employment and economic uncertainty, chronic stress, anxiety, and social isolation are likely to have negative impacts on parent mental health, couple and family relationships, as well as child health and development. Objective: This study aims to: (1) provide timely information on the mental health impacts of the emerging COVID-19 crisis in a close to representative sample of Australian parents and children (0–18 years), (2) identify adults and families most at risk of poor mental health outcomes, and (3) identify factors to target through clinical and public health intervention to reduce risk. Specifically, this study will investigate the extent to which the COVID-19 pandemic is associated with increased risk for parents’ mental health, lower well-being, loneliness, and alcohol use; parent-parent and parent-child relationships (both verbal and physical); and child and adolescent mental health problems. Methods: The study aims to recruit a close to representative sample of at least 2,000 adults aged 18 years and over living in Australia who are parents of a child 0–4 years (early childhood, N = 400), 5–12 years (primary school N = 800), and 13–18 years (secondary school, N = 800). The design will be a longitudinal cohort study using an online recruitment methodology. Participants will be invited to complete an online baseline self-report survey (20 min) followed by a series of shorter online surveys (10 min) scheduled every 2 weeks for the duration of the COVID-19 pandemic (i.e., estimated to be 14 surveys over 6 months). Results: The study will employ post stratification weights to address differences between the final sample and the national population in geographic communities across Australia. Associations will be analyzed using multilevel modeling with time-variant and time-invariant predictors of change in trajectory over the testing period. Conclusions: This study will provide timely information on the mental health impacts of the COVID-19 crisis on parents and children in Australia; identify communities, parents, families, and children most at risk of poor outcomes; and identify potential factors to address in clinical and public health interventions to reduce risk

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Constraining remote oxidation capacity with ATom observations

    Get PDF
    The global oxidation capacity, defined as the tropospheric mean concentration of the hydroxyl radical (OH), controls the lifetime of reactive trace gases in the atmosphere such as methane and carbon monoxide (CO). Models tend to underestimate the methane lifetime and CO concentrations throughout the troposphere, which is consistent with excessive OH. Approximately half of the oxidation of methane and non-methane volatile organic compounds (VOCs) is thought to occur over the oceans where oxidant chemistry has received little validation due to a lack of observational constraints. We use observations from the first two deployments of the NASA ATom aircraft campaign during July-August 2016 and January-February 2017 to evaluate the oxidation capacity over the remote oceans and its representation by the GEOS-Chem chemical transport model. The model successfully simulates the magnitude and vertical profile of remote OH within the measurement uncertainties. Comparisons against the drivers of OH production (water vapor, ozone, and NOy concentrations, ozone photolysis frequencies) also show minimal bias, with the exception of wintertime NOy. The severe model overestimate of NOy during this period may indicate insufficient wet scavenging and/or missing loss on sea-salt aerosols. Large uncertainties in these processes require further study to improve simulated NOy partitioning and removal in the troposphere, but preliminary tests suggest that their overall impact could marginally reduce the model bias in tropospheric OH. During the ATom-1 deployment, OH reactivity (OHR) below 3 km is significantly enhanced, and this is not captured by the sum of its measured components (cOHRobs) or by the model (cOHRmod). This enhancement could suggest missing reactive VOCs but cannot be explained by a comprehensive simulation of both biotic and abiotic ocean sources of VOCs. Additional sources of VOC reactivity in this region are difficult to reconcile with the full suite of ATom measurement constraints. The model generally reproduces the magnitude and seasonality of cOHRobs but underestimates the contribution of oxygenated VOCs, mainly acetaldehyde, which is severely underestimated throughout the troposphere despite its calculated lifetime of less than a day. Missing model acetaldehyde in previous studies was attributed to measurement uncertainties that have been largely resolved. Observations of peroxyacetic acid (PAA) provide new support for remote levels of acetaldehyde. The underestimate in both model acetaldehyde and PAA is present throughout the year in both hemispheres and peaks during Northern Hemisphere summer. The addition of ocean sources of VOCs in the model increases cOHRmod by 3 % to 9 % and improves model-measurement agreement for acetaldehyde, particularly in winter, but cannot resolve the model summertime bias. Doing so would require 100 Tg yr-1 of a longlived unknown precursor throughout the year with significant additional emissions in the Northern Hemisphere summer. Improving the model bias for remote acetaldehyde and PAA is unlikely to fully resolve previously reported model global biases in OH and methane lifetime, suggesting that future work should examine the sources and sinks of OH over land
    corecore