
This is a repository copy of Improving the prediction of an atmospheric chemistry transport
model using gradient boosted regression trees.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/151716/

Version: Published Version

Article:

Ivatt, Peter and Evans, Mathew John orcid.org/0000-0003-4775-032X (2020) Improving 
the prediction of an atmospheric chemistry transport model using gradient boosted 
regression trees. Atmospheric Chemistry and Physics. pp. 8063-8082. ISSN 1680-7324 

https://doi.org/10.5194/acp-2019-753

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Atmos. Chem. Phys., 20, 8063–8082, 2020
https://doi.org/10.5194/acp-20-8063-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Improving the prediction of an atmospheric chemistry transport

model using gradient-boosted regression trees

Peter D. Ivatt1,2 and Mathew J. Evans1,2

1Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
2National Centre for Atmospheric Science, Department of Chemistry, University of York, York, YO10 5DD, UK

Correspondence: Peter D. Ivatt (peter.ivatt@york.ac.uk)

Received: 22 August 2019 – Discussion started: 2 October 2019
Revised: 24 May 2020 – Accepted: 9 June 2020 – Published: 13 July 2020

Abstract. Predictions from process-based models of envi-
ronmental systems are biased, due to uncertainties in their
inputs and parameterizations, reducing their utility. We de-
velop a predictor for the bias in tropospheric ozone (O3,
a key pollutant) calculated by an atmospheric chemistry
transport model (GEOS-Chem), based on outputs from the
model and observations of ozone from both the surface (EPA,
EMEP, and GAW) and the ozone-sonde networks. We train a
gradient-boosted decision tree algorithm (XGBoost) to pre-
dict model bias (model divided by observation), with model
and observational data for 2010–2015, and then we test the
approach using the years 2016–2017. We show that the bias-
corrected model performs considerably better than the uncor-
rected model. The root-mean-square error is reduced from
16.2 to 7.5 ppb, the normalized mean bias is reduced from
0.28 to −0.04, and Pearson’s R is increased from 0.48 to
0.84. Comparisons with observations from the NASA ATom
flights (which were not included in the training) also show
improvements but to a smaller extent, reducing the root-
mean-square error (RMSE) from 12.1 to 10.5 ppb, reducing
the normalized mean bias (NMB) from 0.08 to 0.06, and
increasing Pearson’s R from 0.76 to 0.79. We attribute the
smaller improvements to the lack of routine observational
constraints for much of the remote troposphere. We show that
the method is robust to variations in the volume of training
data, with approximately a year of data needed to produce
useful performance. Data denial experiments (removing ob-
servational sites from the algorithm training) show that in-
formation from one location (for example Europe) can re-
duce the model bias over other locations (for example North
America) which might provide insights into the processes
controlling the model bias. We explore the choice of pre-

dictor (bias prediction versus direct prediction) and conclude
both may have utility. We conclude that combining machine
learning approaches with process-based models may provide
a useful tool for improving these models.

1 Introduction

Process-based models of the environmental system (e.g.
Earth system models and their subcomponents) use quan-
titative understanding of physical, chemical, and biological
processes to make predictions about the environmental state.
These models typically solve the differential equations that
represent the processes controlling the environment and are
used for a range of tasks including developing new scien-
tific understanding and environmental policies. Given uncer-
tainties in their initial conditions, input variables, parameter-
izations, etc., these models show various biases which limit
their usefulness for some tasks. Here we focus on predictions
of the chemical composition of the atmosphere, specifically
on the concentration of tropospheric ozone (O3). In this re-
gion, O3 is a climate gas (Rajendra and Myles, 2014), dam-
ages ecosystems (Emberson et al., 2018), and is thought to
lead to a million deaths a year (Malley et al., 2017). The pre-
dictions of lower atmosphere O3 from process-based mod-
els are biased (Young et al., 2018), reflecting uncertainties
in the emissions of compounds into the atmosphere (Rypdal
and Winiwarter, 2001), the chemistry of these compounds
(Newsome and Evans, 2017), and meteorology (Schuh et al.,
2019). Understanding and reducing these biases is a critical
scientific activity; however, the ability to improve these pre-
dictions without having to improve the model at a process
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level also has value. For example air quality forecasting and
the quantification of the impacts air pollutants on human and
ecosystem health would both benefit from improved simula-
tions, even without process-level improvements.

Techniques used to reduce bias in air quality models in-
clude the use of ensembles (Wilczak et al., 2006) and data as-
similation. Data assimilation techniques are used to incorpo-
rate observations into meteorological forecasts (Bauer et al.,
2015) and some air quality models (Bocquet et al., 2015);
techniques such a hybrid forecast (Kang et al., 2008; Sili-
bello et al., 2015) or a Kalman filter (Delle Monache et al.,
2006; Kang et al., 2010) have also been similarly applied.

Here we develop a method, based on machine learning ap-
proaches, to predict the bias (modelled quantity – measured
quantity) in a model parameter (in this case tropospheric O3)
based on information available from the model and a set of
observations of the parameter. This bias predictor can then be
applied more widely (in space or time) to the model output to
remove the bias, bringing the model results closer to reality.

Machine learning has shown utility in the field of at-
mospheric science; examples include leveraging computa-
tionally burdensome short-term cloud simulations for use in
climate models (Rasp et al., 2018), quantifying ocean sur-
face CO2 distribution (Rodenbeck et al., 2015), and high-
resolution mapping of precipitation from lower-resolution
model output (Anderson and Lucas, 2018). More specifi-
cally to atmospheric O3, machine learning has been used
for improving parameterization in climate models (Nowack
et al., 2018), creating ensemble weighting for forecasts (Mal-
let et al., 2009) and predicting exposure during forest fire
events (Watson et al., 2019). For bias correction applications,
machine learning has been used to correct observational bias
in dust prior to use in data assimilation (Jin et al., 2019).

Here we describe a machine learning bias correction
method applied to the concentration of (O3) predicted by an
atmospheric chemistry transport model. Here we describe the
GEOS-Chem model used as our model (Sect. 2), the obser-
vations of O3 from four observational networks (Sect. 3), and
our method (Sect. 4) to produce an algorithm to predict the
bias in the model. We explore its performance (Sect. 5) and
how it performs under a number of situations and analyse its
resilience to a reduction in training data (Sect. 6) and training
locations (Sect. 7). Finally, We explore the choice of predic-
tor in Sect. 8 and discuss the applicability and future of such
a methodology in Sect. 9.

2 GEOS-Chem model

For this analysis we use GEOS-Chem version V11-01 (Bey
et al., 2001) an open-access, community, offline chem-
istry transport model (http://www.geos-chem.org, last ac-
cess: 9 July 2020). In this proof-of-concept work, we run the
model at a coarse resolution of 4◦ ×5◦ for numerical expedi-
ency using MERRA-2 meteorology from the NASA Global

Modelling and Assimilation Office (https://gmao.gsfc.nasa.
gov/reanalysis/MERRA-2/, last access: 9 July 2020). The
model has 47 vertical levels extending from the surface to
approximately 80 km in altitude. We use the “tropchem” con-
figuration, which has a differential equation representation of
the chemistry of the troposphere, and a linearized version in
the stratosphere (Eastham et al., 2014). The emissions inven-
tories used include EDGAR (Crippa et al., 2018) and RETRO
(Hu et al., 2015) inventories for global anthropogenic emis-
sions, which are overwritten by regional inventories (NEI
(USA) Travis et al., 2016; CAC (Canada) van Donkelaar
et al., 2008; BRAVO (Mexico) Kuhns et al., 2005; EMEP
(Europe) van Donkelaar et al., 2008; and MIX (East Asia)
Li et al., 2017). GFED4 (Giglio et al., 2013) and MEGAN
(Guenther et al., 2012) are used for biomass burning and bio-
genic emissions. Details of the other emissions used can be
found online (http://wiki.seas.harvard.edu/geos-chem/index.
php/HEMCO_data_directories, last access: 9 July 2020).

To produce the dataset to train the algorithm, the model
is run from 1 January 2010 to 31 December 2015 outputting
the local model state for each hourly observation (see Sects. 3
and 4). For the testing we run the model from 1 January 2016
to 31 December 2017 outputting the local model state hourly
for every grid box within the troposphere.

3 Observational dataset

The location of all of the observations used in this study are
shown in Fig. 1. Ground observations of O3 from the Euro-
pean Monitoring and Evaluation Programme (EMEP) (https:
//www.emep.int, last access: 9 July 2020), the United States
Environmental Protection Agency (EPA) (https://www.epa.
gov/outdoor-air-quality-data, last access: 9 July 2020), and
the Global Atmospheric Watch (GAW) (https://public.wmo.
int/, last access: 9 July 2020) are compiled between 2010
and 2018 (see Sofen et al., 2016, for data cleaning). Due to
the coarse spatial resolution of this study (4◦ × 5◦), we re-
moved all sites flagged as “urban”, as these would not be
representative at this model resolution. Similarly, all moun-
tain sites (observations made at a pressure < 850 hPa) were
removed due the difficulty in representing the complex to-
pography typical of mountain locations within the large grid
boxes.

Ozone-sonde data from the World Ozone and Ultravio-
let Radiation Data Centre were also used (https://woudc.org,
last access: 9 July 2020). Ozone-sonde observations above
100 ppb of O3 were excluded as they are considered to be
in the stratosphere (Pan et al., 2004). For both surface and
sonde observations, when multiple observations were found
in the same hourly model grid box (in both the horizontal
and vertical) they were averaged (mean) together to create
a single “meta-site”. There are 13 118 334 surface meta-site
observations in the training period between 1 January 2010
and 31 December 2015 and 3 783 303 in the testing period
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Figure 1. Locations of meta observations (averaged over model 4◦ × 5◦ grid boxes) from the surface (EPA, EMEP, and GAW indicated in
red), the ozone-sonde network (blue), and the ATom flights (green).

between 1 January 2016 and 31 December 2017. There are
250 533 ozone-sonde meta-site observations in the training
period and 78 451 in the testing period.

Observations of O3 from the NASA Atmospheric Tomog-
raphy Mission (ATom) flights (Wofsy et al., 2018) were used
as an independent testing dataset. ATom flew over the Pa-
cific and the Atlantic from the northern mid-latitudes to the
southern mid-latitudes and back from the surface to 15 km
measuring the concentration of many compounds including
O3 (Fig. 1). It flew for each of the four seasons between
July 2016 and May 2018, but only the first three (summer,
spring, and winter) are used due to availability at the time
of writing. Given the oceanic nature of the flights and their
sampling through the lowermost 15 km of the atmosphere,
the observations collected are spatially similar to the sonde
observations. As with the surface and sonde data, any O3

observations greater than 100 ppb were removed, and data
were averaged onto the model grid resolution (mean) to give
hourly model resolution “meta” sites. Once averaged, there
are 10 518 meta observations used for the algorithm testing.

4 Developing the bias predictor

To develop a predictor for the bias in the model O3, we use
the hourly observations from the surface and sondes for the
training period (1 January 2010 to 31 December 2015). We
run the model for the same period, outputting values of the
model’s local “state” at each observation location in space
and time. The model local state consists of the grid box con-
centration of the 68 chemicals transported by the model (in-
cluding O3) and 15 physical model parameters (see Table 1).
The chosen parameters were thought to be the most impor-
tant in determining the local conditions controlling the O3

concentration. Future work could better define the optimal
set of parameters.

Once each O3 observation has a corresponding model pre-
diction, we can develop a function to predict the model bias
given the values of the model local state as input. Several
potential machine learning methodologies exist for making
this prediction, including neural nets (Gardner and Dorling,
1998) and decision trees (Breiman, 2001). Here we favour
decision tree methods due to their increased level of explica-
bility over neural nets (Yan et al., 2016).

As with other machine learning approaches, decision tree
techniques (Blockeel and De Raedt, 1998) make a predic-
tion for the value of a function based on a number of input
variables (features) given previous values of the function and
the associated values of the features. It is essentially non-
linear multivariant regression. A single decision tree is a se-
ries of decision nodes that ask whether the value of a par-
ticular feature is higher than a specific value. If the value is
higher, progress is made to another decision node; if it is not,
progress is made to a different decision node. Ultimately, this
series of decisions reaches a leaf node which gives the pre-
diction of the function. The depth of a tree (the number of
decisions needed to get to a leaf node) is an important aspect
of tuning decision trees. If the tree is too shallow it will miss
key relationships in the data. Conversely, if a model is too
deep it will over-fit to the specific dataset and will not gen-
eralize well. The training of the system relies upon deciding
which features should be used by each decision node and the
specific value to be tested. The use of a single decision tree
leads to over-fitting (Geurts et al., 2009), so this progressed
to using random forest regression (Breiman, 2001), where a
number of decision trees are constructed with differing sam-
pling of the input data. The mean prediction of all of the de-
cision trees (the forest) was then used as the prediction of the
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Table 1. Chemical tracers and physical parameters used for training.

Chemical tracers Physical parameters

NO Hydrophilic black carbon Pressure
O3 Hydrophobic organic carbon Temperature
Peroxyacetylnitrate Hydrophilic organic carbon Absolute humidity
CO 0.7 µm dust Surface pressure
≥ C4 alkanes 1.4 µm dust Aerosol surface area
Isoprene 2.4 µm dust Horizontal wind speed
HNO3 4.5 µm dust Vertical wind speed
H2O2 Isoprene epoxide Surface albedo
Acetone Accumulation mode sea salt aerosol Cloud fraction
Methyl ethyl ketone Coarse mode sea salt aerosol Optical depth
Acetaldehyde Br2 Solar zenith angle
≥C4 aldehydes Br Cos(day of year/360)2π

Methylvinylketone BrO Sin(day of year/360)2π

Methacrolein HOBr
Peroxymethacryloyl nitrate HBr
Peroxypropionylnitrate BrNO2
≥C4 alkylnitrates BrNO3
Propene CHBr3
Propane CH2Br2
Formaldehyde CH3Br
Ethane Methyl peroxy nitrate
N2O5 Beta isoprene nitrate
HNO4 Delta isoprene nitrate
Methylhydroperoxide 5C acid from isoprene
Dimethylsulfide Propanone nitrate
SO2 Hydroxyacetone
SO2−

4 Glycoaldehyde

SO2−
4 on sea salt HNO2

Methanesulfonic acid Nitrate from methyl ethyl ketone
NH3 Nitrate from methacrolein
NH+

4 Peroxide from isoprene
Inorganic nitrates Peroxyacetic acid
Inorganic nitrates on sea salt NO2
Hydrophobic black carbon NO3

function. More recently, gradient-boosting regression (Fried-
man, 2002) relies on building a tree with a relatively shal-
low depth and then fitting a subsequent tree to the residuals.
This is then repeated until an adequate level of complexity
is reached, where the model generalizes the dataset without
over-fitting.

The gradient-boosted regression technique suited our
needs for a variety of reasons: it is able to capture non-linear
relationships which underlie atmospheric chemistry (Krol
and Poppe, 1998); the decision-tree-based machine learning
technique is more interpretable than neural-net-based models
(Kingsford and Salzberg, 2008), through the output of deci-
sion statistics; the technique has a relatively quick training
time, allowing efficient cross validation for tuning of hyper-
parameters; and it is highly scalable, meaning we are able to
test on small subsets of the data before increasing to much
longer training runs (Torlay et al., 2017). For the work de-

scribed here we use the XGBoost (Chen and Guestrin, 2016;
Frery et al., 2017) algorithm.

Hyper-parameters are parameters set before training that
represent the required complexity of the system being learnt
(Bergstra and Bengio, 2012). Tuning of these parameters was
achieved by five k-fold cross validation whereby the training
data are broken into five subsets, with the training data orga-
nized by date. The model was then trained on four of these
subsets and tested on the remaining subset. Training and test-
ing are repeated on each of the five subsets to identify the
optimum hyper-parameters, attempting to balance complex-
ity without over-fitting (Cawley and Talbot, 2010).

The key hyper-parameters tuned were the number of the
trees and depth of trees. Similar results could be found with
12 to 18 layers of tree depth, with a reduction in number
of trees needed at greater depth. It was found that the al-
gorithm achieved the majority of its predictive power early

Atmos. Chem. Phys., 20, 8063–8082, 2020 https://doi.org/10.5194/acp-20-8063-2020



P. D. Ivatt and M. J. Evans: Improving the prediction of an atmospheric chemistry transport model 8067

on, with the bulk of the trees producing small gains in root-
mean-square error. As a compromise between training time
and predictive strength, 150 trees with a depth of 12 were
chosen. This took 1 h to train on a 40-core CPU node, con-
sisting of two Intel Xeon Gold 6138 CPUs. Mean-squared
error was the loss function used for training.

Numerous model performance metrics are used in subse-
quent assessment of the model performance. The root-mean-
squared error (RMSE) measures the average error in the pre-
diction, normalized mean bias (NMB) measures the direc-
tion of the bias and normalizes the mean value, and Pearson’s
R correlation coefficient measures the linear relationship be-
tween the prediction and the observation.

RMSE(y, ŷ) =

[

1

N

N
∑

i=1

(yi − ŷi)
2

]
1
2

(1)

NMB(y, ŷ) =

∑N
i=1(yi − ŷi)
∑N

i=0yi

(2)

R(y, ŷ) =

∑N
i=1[(yi − yi)(ŷi − ŷi)]

∑N
i=1[(yi − yi)

2(ŷi − ŷi)
2]

1
2

(3)

Here y is the observed values, ŷ is the predicted values, and
N is the number of samples.

5 Application

With the bias predictor now trained we can now apply it to
the model output and evaluate performance. We do this for a
different period (1 January 2016–31 December 2017) to that
used in the training (1 January 2010–31 December 2015).
We first look at the mean daily (diurnal) cycles calculated
with the model for nine globally distributed sites (Fig. 2 with
statistics given in Table 2). The base model (blue) shows no-
table differences with the observations (black) for most sites.
The subtraction of the bias prediction from the base model
(red) leads to an increase in the fidelity of the simulation.
For the US sites, the base model overestimates at all times,
consistent with previous work (Travis et al., 2016), with the
largest biases occurring during the night. The bias-corrected
model now shows a diurnal cycle very similar to that ob-
served, with R increasing from a mean of 0.92 to 1.00, RM-
SEs decreasing from a mean of 15.1 ppb to 1.1 ppbv, and
NMB decreasing from a mean of 0.51 to −0.02. The bias
correction thus successfully corrects biases seen in the mean
diurnal cycle, notably the large night-time bias. Although the
base model failure is less evident for the European sites (Hu
et al., 2018), there are still in general small improvements
with the inclusion of the bias corrector. The Japanese data
show a differing pattern. Similar to the US sites, the base
model overestimates the O3, generating a much smaller diur-
nal cycle compared to the observation. Although the bias cor-
rector improves the mean value, it does not completely cor-
rect the diurnal cycle. We attribute this to the coastal nature

of Japan. The model grid box containing the Japanese obser-
vations is mainly oceanic but the observations show a conti-
nental diurnal cycle (a marked increase in O3 during the day
similar to those seen in the US). It is likely that the predicted
bias is being distorted by biases at other ocean-dominated
grid boxes, when in Japan’s case, the O3 concentration is
likely influenced by long-range transport from China. For the
two clean tropical sites (Cabo Verde and Cape Point in South
Africa) the base model already does a reasonable job (Sher-
wen et al., 2016) so the bias corrected version improves little
and slightly reduces the NMB performance at Cabo Verde
from 0.03 to 0.04. For the Antarctic site the large bias evi-
dent in the model (Sherwen et al., 2016) is almost completely
removed by the bias corrector, but that results in a small re-
duction in the R value.

The seasonal comparison (Fig. 3 with statistics given in
Table 3) shows a similar pattern. Over the polluted sites
(USA, UK, Germany) biases are effectively removed. The
performance for Japan is less good, with the clean tropical
sites again showing only small improvements. Over Antarc-
tica a considerable bias is removed with the application of
the bias corrector. Where the performance of the model is al-
ready good, such as the RMSE at Cabo Verde or for the NMB
in the UK, the inclusion of the bias correction can slightly de-
grade performance.

A point-by-point comparison between all of the surface
data (1 January 2016–31 December 2017) and the model
with and without the bias corrector is shown in Fig. 4.
The bias corrector removes virtually all of the model biases
(NMB) taking it from 0.29 to −0.04, substantially reduces
the error (RMSE) from 16.2 to 7.5 ppb, and increases the cor-
relation (Pearson’s R) from 0.48 to 0.84. Although this eval-
uation is for a different time period than the training dataset,
it is still for the same sites. It would be preferable to use a
completely different dataset to evaluate the performance of
the system.

We use the ATom dataset (Sect. 3) to provide this inde-
pendent evaluation. Figure 5 (with statistical data in Table 4)
shows the comparison between the model prediction of the
ATom observations with and without the bias corrector. Al-
though the inclusion of the bias correction improves the per-
formance of the model, this improvement is notably smaller
than that seen for the surface data. The RMSE is reduced
by only 13 % for the ATom data compared to 54 % for the
surface observations. Similarly Pearson’s R only marginally
improves with the use of the bias corrector. Much of the im-
provement of the model’s performance for the ATom data
will be coming from the observations collected by the sonde
network. There are fewer observations (40 : 1) collected by
that network than by the surface network. Thus for the bias
correction approach to work well it appears that there must
be considerable volumes of observations to constrain the bias
under sufficiently diverse conditions. It would appear that the
sonde network may not provide that level of information to
the degree that the surface network does.
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Table 2. Statistics for diurnal profiles at the nine selected sites for the period 1 January 2016–31 December 2017, for the base model (BM),
the model with the bias correction applied (BC), the corrector trained without the nine sites (NS), and the model trained without the western
hemisphere data (NWH). Statistics are described in Sect. 5.

Pearson’s R RMSE (ppb) NMB

Site BM BC NS NWH BM BC NS NWH BM BC NS NWH

USA (California) 0.852 0.997 0.986 0.983 14.74 1.98 3.59 6.57 0.46 −0.06 −0.11 −0.15
USA (New York) 0.970 0.994 0.992 0.989 13.12 2.25 1.39 3.91 0.46 −0.08 0.04 −0.12
USA (Texas) 0.915 0.998 0.971 0.969 16.29 1.45 3.83 3.15 0.62 −0.05 0.1 −0.08
UK 0.993 0.998 0.998 0.998 1.02 1.39 2.29 1.13 −0.02 −0.05 −0.08 −0.04
Germany 0.791 0.991 0.982 0.973 3.25 0.92 2.88 0.81 0.09 0.01 −0.07 0.0
Japan 0.98 0.764 0.949 0.648 14.9 6.94 5.46 8.03 0.48 −0.12 0.12 −0.14
Cabo Verde 0.994 0.812 0.8 0.895 1.23 1.38 3.33 2.3 −0.03 −0.04 −0.1 −0.07
South Africa (Cape Point) 0.081 0.616 -0.264 0.815 3.32 2.34 7.46 1.93 −0.11 −0.08 −0.25 −0.07
Antarctica (Neumayer) 0.883 0.872 0.532 0.73 8.57 0.67 4.75 0.85 −0.33 −0.03 −0.18 −0.03

Figure 2. Diurnal cycle for O3 at nine meta-sites in 2016–2017. Shown are the observations, the base model, and the model corrected with
the bias predictor. The median values are shown as the continuous line and the 25th to 75th percentiles as shaded areas.

Atmos. Chem. Phys., 20, 8063–8082, 2020 https://doi.org/10.5194/acp-20-8063-2020
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Table 3. Statistics for seasonal profiles at the nine selected sites for the period 1 January 2016–31 December 2017, for the base model (BM),
the model with the bias correction applied (BC), the corrector trained without the nine sites (NS), and the model trained without the western
hemisphere data (NWH). Statistics are described in Sect. 4.

Pearson’s R RMSE (ppb) NMB

Site BM BC NS NWH BM BC NS NWH BM BC NS NWH

USA (California) 0.833 0.987 0.952 0.948 14.02 2.19 5.2 4.54 0.45 −0.06 −0.11 −0.15
USA (New York) 0.759 0.992 0.981 0.924 14.51 2.23 2.11 4.4 0.46 −0.08 0.04 −0.13
USA (Texas) 0.335 0.991 0.952 0.857 16.64 1.45 2.98 3.22 0.62 −0.05 0.1 −0.08
UK 0.519 0.935 0.939 0.939 7.27 2.51 3.11 2.27 −0.03 −0.05 −0.08 −0.04
Germany 0.848 0.956 0.663 0.963 6.55 2.42 6.37 2.13 0.09 0.01 −0.07 0.0
Japan 0.939 0.972 0.812 0.968 14.0 3.92 6.34 4.59 0.48 −0.12 0.13 −0.14
Cabo Verde 0.956 0.978 0.898 0.921 1.61 1.73 3.86 3.52 −0.03 −0.04 −0.1 −0.07
South Africa (Cape Point) 0.953 0.976 0.963 0.979 3.6 2.63 7.1 2.24 −0.11 −0.08 −0.24 −0.07
Antarctica (Neumayer) 0.939 0.993 0.968 0.993 8.86 1.04 5.02 1.14 −0.33 −0.03 −0.18 −0.03

Figure 3. Seasonal cycle for O3 at nine meta-sites in 2016–2017. Shown are the observations, the base model, and the model corrected with
the bias predictor. The median values are shown as the continuous line and the 25th to 75th percentiles as shaded areas.
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Table 4. Statistical performance for the period 1 January 2016–31 December 2017 of the base model, model with a bias correction applied,
and directly predicted O3 concentration. Statistics are described in Sect. 4.

Surface ATom

Pearson’s R RMSE NMB Pearson’s R RMSE NMB

Base O3 0.479 16.21 0.29 0.761 12.11 0.08
Corrected O3 0.841 7.48 −0.04 0.792 10.50 0.06
Predicted O3 0.850 7.11 0.00 0.797 10.92 0.11

Figure 4. Kernel density estimation plot of model vs. observation
for all ground site observations compared to the model (a) and the
corrected model (b) for 2016–2017. The dashed line indicates the
1 : 1 line, and the coloured line indicates the line of best fit using
orthogonal regression. The plot is made up of 3 783 303 data points.

Applying the bias corrector to all of the grid points within
the model shows the global magnitude of the predicted bias
(Fig. 6). Similar to the analysis of the nine individual sites,
the base model is predicted to be biased high over much of
the continental USA, with smaller biases over Europe and the

Figure 5. Kernel density estimation plot of model vs. observations
for all ATom summer, winter, and autumn campaign observations
compared to the model (a) and the corrected model (b) for 2016–
2017. The dashed line indicates the 1 : 1 line, and the coloured line
indicates the line of best fit using orthogonal regression. The plot is
made up of 10 518 data points.

tropical ocean regions. Over the southern ocean the model is
predicted to be biased low. However, the bias is also pre-
dicted for regions without observations (see Fig. 1). For ex-
ample, over China, the model is predicted to be biased high
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Figure 6. Annual mean predicted bias (model – measurement) that
would be applied to all grid boxes for a 1-year (2016) model simu-
lation in three pressure ranges of the atmosphere. The > 100 ppb of
O3 definition of the stratosphere is used.

by ∼ 15 ppbv. This is higher but not dissimilar to the biases
previously found for the model in China (Hu et al., 2018)
which found a positive bias of 4–9 ppbv but using a different
model configuration (higher resolution) and for a different
model assessment (MDA8 vs. annual mean). Similar ques-
tions as to the accuracy of the prediction arise from the large
biases predicted for central Africa and South America. Fu-
ture evaluation of the bias correction methodology should
more closely look at the impact on these regions and where
possible extend the training dataset to use observations from
these regions if they are available. While the algorithm is able
to provide a prediction for any region, we can only have con-
fidence in regions for which we have test data.

In the free troposphere (900 to 400 hPa) we find the model
is biased low in the southern extra-tropical and polar regions
and biased high in tropical regions. This matches the pattern
of the bias found at 500 hPa in the ensemble comparison per-
formed in Young et al. (2018). However, that study found

Figure 7. Annual (2016) mean change (corrected model – base
model) in diurnal cycle (max–min) in three pressure ranges of the
atmosphere. The > 100 ppb of O3 definition of the stratosphere is
used.

that the northern extra-tropical and polar regions were biased
low, whereas our results show a high bias, possibly due to a
specific GEOS-Chem bias in these regions.

As we saw in the analysis of the nine individual sites,
much of the improvement observed was due to the changes
in the diurnal cycle. Figure 7 shows the global annual aver-
age change in diurnal cycle caused by the bias corrector. We
see that there are only positive changes, increasing the am-
plitude of the diurnal cycle. This is likely due to the coarse
model resolution not capturing the high concentration gradi-
ents required to achieve high rates of production or titration
of O3. Conversely, Fig. 8 shows that over-polluted regions’
seasonal amplitude decreases, which from the nine individ-
ual sites (Fig. 3) appears to be a result of reductions in the
predicted summer O3 concentration.

The gain (the loss reduction gained from splits using that
feature) is shown in Fig. 9. Derivation of gain metric for
XGBoost can be found in Chen and Guestrin (2016). Gain
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Figure 8. Change (corrected model – base model) in seasonal cycle
(max–min) for 2016 in three pressure ranges of the atmosphere. The
> 100 ppb of O3 definition of the stratosphere is used.

provides a diagnostic of the importance of different input
variables in the decision trees used for making predictions.
Surprisingly, the most important feature from this analysis
is the concentration of NO3 (the nitrate radical). NO3 has a
high concentration in polluted night-time environments and
low concentration in clean regions or during daytime (Winer
et al., 1984). The NO3 feature appears to be being used to
correct the concentration of O3 in regions such as the US
which are polluted and have a notably high bias at night. The
next most important feature is the O3 concentration itself;
this may be a result of biases arising during high- or low-O3

periods. O3 may also reflect biases in regions with very low
O3 concentrations such as around Antarctica. The third most
important feature is the CH2O concentration. CH2O may in-
dicate biases over regions of high photochemical activity, as
CH2O is a product of the photochemical oxidation of hydro-
carbons (Wittrock et al., 2006). Future work should explore
these explanatory capabilities to understand why the bias cor-

rection is performing as it is. This may also allow for a sci-
entific understanding of why the model is biased rather than
just how much the model is biased.

We have shown that the bias correction method provides
an enhancement of the base-model prediction under the situ-
ations explored. We now perform some experiments with the
system to explore its robustness to the size of the dataset used
for training both spatially and temporally.

6 Size of training dataset

The bias predictor was trained using 6 years of data (2010–
2015). This provides a challenge for incorporating other
observational datasets. For some critical locations such as
China or India the observational record is not that long, and
for high-resolution model data (e.g. 12.5 km; Hu et al., 2018)
managing and processing 73 parameters for 6 years could
be computationally burdensome. Being able to reduce the
number of years of data whilst maintaining the utility of the
approach would therefore be useful. Figure 10 shows the
improvement in the global performance of the model met-
rics (same as for Table 4) for surface O3 varying the num-
ber of months of training data used. The end of the training
set was 1 January 2016 in all cases, and the starting time
was pushed backwards to provide a sufficiently long training
dataset. The dots in Fig. 10 represent the statistical perfor-
mance of the uncorrected model. Training with only a month
of data (in this case December 2015) marginally reduces the
RMSE and Pearson’s R. However, it causes a change in the
sign of the NMB, as the model’s wintertime bias is projected
over the whole year. Considerable benefit arises once at least
8 months of training data have been included. Using a bias
predictor trained with a year of observational data increases
the performance of the base model, halving the RMSE, re-
moving most of the NMB, and increasing Pearson’s R by
60 %. Much of the variability in the power spectrum of sur-
face O3 is captured by timescales of a year or less (Bow-
dalo et al., 2016); thus a timescale of a year appears to be a
good balance between computational burden and utility for
an operational system such as air quality forecasting. When
altering the size of the training dataset we found the train-
ing time was approximately linear to the number of samples.
For future high-resolution runs we may consider the use of
GPUs, which have been found to substantially decrease train-
ing time (Huan et al., 2017).

7 Data denial

Now we explore the impact of removing locations from the
training dataset. We start by removing the data from the
nine meta-sites (California, New York, Texas, UK, Germany,
Japan, Cabo Verde, South Africa – Cape Point, Antarctica
– Neumayer) from the algorithm training dataset (again for
2010–2015) and evaluate the bias-corrected model using this
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Figure 9. Feature importance based on gain (the average gain across all splits the feature is used in). ∗ Methyl-hydro-peroxide. ∗∗ Perox-
ymethacryloyl nitrate.

Figure 10. Testing statistics with increasing length of training data.
The dot represents the uncorrected model performance.

new bias predictor for these sites (again for 2016–2017)
(Figs. 11 and 12). Over the USA, removing the nine observa-
tional datasets does degrade the overall model performance
slightly (the green lines in Figs. 11 and 12) compared to the
full training dataset (red line). It appears that the neighbour-
ing sites are similar enough to the removed sites to provide
sufficient information to almost completely correct the bias
even without including the actual sites. There are different
degrees of impact for the other sites. For the UK, the impact
of removing the UK site from the training dataset is minimal.
For Germany, the bias corrections are now larger and over-
compensates for the base model during the night and in the
summer months. For Japan the removal of its information
provides a simulation halfway between the simulation with
and without the standard bias correction. For remote sites,
such as Cabo Verde and South Africa, removal makes the
bias-corrected model worse than the base model. Similar to
Japan, removing the Antarctic site leads to a bias correction
which is between the standard bias-corrected model and the
standard model. A full set of statistics for the diurnal and
seasonal results can be found in Tables 2 and 3 respectively.

Much of this behaviour relates to the similarity of other
sites in the training dataset to those which were removed. For
sites such as the US, and to some extent Europe, removing a
few sites has little influence on the bias predictor as there are
a number of similar neighbouring sites which can provide
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Figure 11. Diurnal cycle for O3 at nine meta-sites in 2016–2017. Shown are the observations, the base model, a corrected model trained
using all of the observations, and a corrected model trained with the nine sites removed. The median values are shown as the continuous line
and the 25th to 75th percentiles as shaded areas.

that information. For other locations such as the clean Cabo
Verde and South African sites there are no other similar sites.
Thus removing those sites from the training dataset removes
considerable amounts of information. If there are no similar
sites for the bias correction to use, an inappropriate correc-
tion can be applied, which makes the simulation worse. For
sites such as the Japanese and Antarctic sites there are some
similar sites in the training data to provide some improve-
ment over the base model.

Taking the data denial experiments further, we remove
all observations within North and South America from the
training dataset (everything between −180 and −10◦ E). Fig-
ures 13 and 14 show the impact of this on the standard nine
sites. For New York and Texas the bias-corrected model per-
forms almost as well without North and South America as it

does with. The bias corrector predicts roughly the same cor-
rection for California as it does for New York and Texas, and
this over-corrects daytime concentrations for California but
simulates the night-time and the seasonal cycles much better
than without the bias corrector. For the other six sites around
the world, the influence of removing North and South Amer-
ica is minimal. It appears surprising that the corrections ap-
plied for North America are so good even though the North
American data are not included within the training. This sug-
gests that at least some of the reasons for the biases in the
model are common between, say, North America and Eu-
rope, indicating a common source of some of the bias. This
may be due to errors in the model’s chemistry or meteorol-
ogy, which could be global rather than local in nature.
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Figure 12. Seasonal cycle for O3 at nine meta-sites in 2016–2017. Shown are the observations, the base model, a corrected model trained
using all of the observations, and a corrected model trained with the nine sites removed. The median values are shown as the continuous line
and the 25th to 75th percentiles as shaded areas.

Figure 15 shows the changes in prediction that would oc-
cur globally if the western hemisphere (−180 to −10◦ E) is
removed from the training data. Where there are observations
in the eastern hemisphere, changes are in general small. But
there are some notable changes for locations that do have
observations such as in Spain. It appears the algorithm is us-
ing information from the North American observations to in-
fer corrections for Spain. These are relatively similar loca-
tions (photolysis environment, temperatures, emissions, etc.)
so the algorithm is using information from North America
in the Spanish predictions. The difference in these predic-
tions may suggest that there are different causes in the biases
between the North American sites and the Spanish sites. The
changes are much more profound in areas that have no obser-
vations of their own to constrain the problem. Removing the

western hemisphere reduces the number of unique environ-
ments the algorithm has to learn from, resulting in substantial
changes in the prediction.

It would be possible to consider other data denial exper-
iments based on site type (rural, industrial, residential, etc.)
biome, altitude, etc., which could provide information about
the utility of each observation. This would likely improve
with running the base model at a higher resolution than was
undertaken here.

8 Nature of the prediction

The bias correction method described here attempts to pre-
dict the bias in the model. An alternative approach would
be to directly predict the O3 concentration given the values
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Figure 13. Diurnal cycle for O3 at nine meta-sites in 2016–2017. Shown are the observations, the base model, a corrected model trained
using all of the observations, and a corrected model trained with all western hemisphere (west of −20◦ E) data removed. The median values
are shown as the continuous line and the 25th to 75th percentiles as shaded areas.

of the features including the O3 mixing ratio. An algorithm
to do this given the same model local state information is
trained on the standard 6 years of training data (2010–2015).
Table 4 shows a statistical analysis of the performance for
the model, coupled to both the bias predictor and the direct
predictor. For the testing years (2016 to 2017) the direct pre-
diction of surface O3 performs marginally better than the bias
correction (RMSE of 7.1 ppb versus 7.5 ppbv, NMB of 0.00
vs. −0.04, and R of 0.85 versus 0.84).

However, for the ATom dataset, the bias predictor per-
forms better (Table 4). We interpret this to mean that for loca-
tions where observations are included in the training (surface
sites and sondes), directly predicting at locations has ben-
efits. As XGBoost is unable to extrapolate outside the range
of the observation data, direct prediction constrains to the ob-

served O3 concentration range. While this appears beneficial
in areas we have observations, at sites where no observation
training data are available, it is better to use the bias correc-
tion approach as this only constrains the scale factor on the
bias, not the concentration itself. Further work is necessary
to advance our understanding of the form of the prediction
that is necessary to best provide a useful enhancement of the
system.

9 Discussion

We have shown that the bias in the O3 concentration calcu-
lated by a chemistry transport model can be reduced through
the use of a machine learning algorithm, with the results ap-
pearing robust to data denial and training length experiments.
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Figure 14. Seasonal cycle for O3 at nine meta-sites in 2016–2017. Shown are the observations, the base model, a corrected model trained
using all of the observations, and a corrected model trained with all western hemisphere (west of −20◦ E) data removed. The median values
are shown as the continuous line and the 25th to 75th percentiles as shaded areas.

For activities such as air quality forecasting for sites with a
long observational record, this appears to offer a potential
route to improve fidelity of the forecasts without having to
improve process-level understanding. This work offers some
practical advantages over data assimilation. The observations
do not necessarily need to be available in real time as the
training of the bias predictor can be made using past observa-
tions and applied to a forecast without the latest observations
being available. The approach may also be applied to regions
where observational data are not available. Although this ne-
cessitates care, the temporary lack of availability of data is
much less of a problem for this approach than for data assim-
ilation. As forecast models are run at resolutions on the order
of 1–10 km, further work will need to be done to examine
the technique’s performance with the added variability asso-

ciated with an increase in resolution. It is possible that some
mitigation may be achieved with the inclusion of additional
high-resolution data, such as road usage or topological maps.
The use of variables that reflect the state beyond the grid box
(such as the concentration in adjacent boxes or the average
of all boxes within a varying range) to provide information
on upwind conditions may further improve performance.

More future work is needed to understand the approach
than has been shown in this proof-of-concept work. Ex-
ploring the number and nature of the variables used would
thus be advantageous. The complete set of model tracers
and some physical variables were used here but their choice
was somewhat arbitrary. A more systematic exploration of
which variables are needed to be included is necessary. Are
all the variables needed? Are important physical variables
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Figure 15. Difference in the global mean annual surface O3 prediction between a predictor trained with western hemisphere observation data
(west of −20◦ E) and a predictor trained without these data. Red dots show locations of ground sites in the surface to 900 hPa plot and sonde
locations in the other two plots.

missing? Similarly, only one machine learning algorithm has
been used with one set of hyper-parameters chosen. Algo-
rithm development is occurring very quickly, and we have
not explored other approaches such as neural nets that may
offer improved performance. The ability to predict the bias
for regions without observations is also a potentially useful

tool for better constraining the global system. Observations
of surface O3 exist for China (Li et al., 2019) but have not
been included here for expediency. It would be scientifically
interesting to see how they compare to those predicted by the
bias corrector and how the bias corrector changes if they are
included in the training. It seems possible that the approach
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developed here could be used to explore methods to extract
information about why the model is biased rather than just
quantifying that bias. While much of the information pro-
vided by the predictor is indicative rather than causative, cou-
pling feature importance and data denial with domain knowl-
edge may provide a powerful diagnostic technique for iden-
tifying the source of bias. Finally, the method could readily
be extended to other model products such as PM2.5.

More generally machine learning algorithms appear to of-
fer opportunities to understand the large, multivariate, and
non-linear datasets typical of atmospheric science and the
wider environmental sciences. They offer new tools to un-
derstand these scientifically interesting, computationally de-
manding, and socially relevant problems. However, they
must also be well characterized and evaluated before they
are routinely used to make the forecasts and predictions.
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