13 research outputs found

    Filling a niche in “ligand space” with bulky, electron-poor phosphorus (III) alkoxides

    Get PDF
    The chemistry of phosphorus(III) ligands, which are of key importance in coordination chemistry, organometallic chemistry and catalysis, is dominated by relatively electron-rich species. Many of the electron-poor P(III) ligands that are readily available have relatively small steric profiles. As such, there is a significant gap in “ligand space” where more sterically bulky, electron-poor P(III) ligands are needed. This contribution discusses the coordination chemistry, steric and electronic properties of P(III) ligands bearing highly fluorinated alkoxide groups of the general form PRn(ORF)3-n, where R = Ph, RF = C(H)(CF3)2 and C(CF3)3; n = 1-3. These ligands are simple to synthesize and a range of experimental and theoretical methods suggest that their steric and electronic properties can be “tuned” by modification of their substituents, making them excellent candidates for large, electron-poor ligands
    corecore