572 research outputs found

    Biotech Innovation in Europe's Food and Drink Processing Industry: Promise, Barriers and Exploitation

    Get PDF
    Early optimism about the potential of biotechnology to contribute to "the production of food with improved quality and nutritional content" (ACOST, 1990) has waned in the face of consumer resistance to the use of genetically modified organisms in food. The European food and drink sector has not abandoned biotechnology, however, but it is being very selective in its use. Some of the current applications of biotechnology were not recognized in early predictions about the application of biotechnology to the food and drink sector.

    Cuba: Prospects for a Peaceful Succession and Democratic Transition

    Get PDF
    In the last fifteen years Cuban economy has been in crisis. Social tensions have been rising. The health condition of Fidel Castro shows some signs of deterioration. What is the real strength of Cuba\u27s internal opposition? Will succession and transition after the President Castro develop in a peaceful atmosphere or not? Are there prospects for a peaceful succession and democratic transition

    Reorientational Dynamics and Solid-Phase Transformation of Ammonium Dicyanamide into Dicyandiamide

    Get PDF
    The reorientational dynamics of ammonium dicyanamide ND4[N(C≡N)2] and the kinetics as well as the mechanism of the solid-state isomerization reaction from ammonium dicyanamide into dicyandiamide (N≡C-N=C(NH2)2) was studied by means of 2H and 14N solid-state NMR spectroscopy in a temperature range between 38 and 390 K. Whereas in previous investigations the mechanism of the solid-state transformation was investigated by means of vibrational and magic angle spinning solid-state NMR spectroscopy as well as neutron diffraction, we here present a comprehensive 2H study of the ammonium ion dynamics prior to and during the course of the reaction, thereby highlighting possible cross correlations between dynamics and reactivity involving the ammonium ion. The ND4+ group was found to undergo thermally activated random jumps in a tetrahedral potential, which is increasingly distorted with increasing temperature, giving rise to an asymmetrically compressed or elongated tetrahedron with deviations from the tetrahedral angle of up to 6°. The correlation time follows an Arrhenius law with an activation energy of Ea = 25.8(2) kJ mol-1 and an attempt frequency of τ0-1 = 440(80) THz. The spin−lattice relaxation times were fitted according to a simple Bloembergen−Purcell−Pound type model with a T1 minimum of 4 ms at 230 K. Temperature-dependent librational amplitudes were extracted by line-shape simulations between 38 and 390 K and contrasted with those obtained by neutron diffraction, their values ranging between 5 and 28°. The onset and progress of the solid-phase transformation were followed in situ at temperatures above 372 K and could be classified as a strongly temperature-dependent, heterogeneous two-step reaction proceeding with rapid evolution of ammonia and comparatively slow subsequent reintegration into the solid. On the microscopic level, this correlates with a rapid proton transferpossibly triggered by a coupling between the ammonium ion dynamics and phonon modes on the terahertz time scaleand an essentially decoupled nucleophilic attack of ammonia at the nitrile carbon, giving rise to significantly differing time constants for the two processes

    Identifying creative research accomplishments : methodology and results for nanotechnology and human genetics

    Get PDF
    Motivated by concerns about the organizational and institutional conditions that foster research creativity in science, we focus on how creative research can be defined, operationalized, and empirically identified. A functional typology of research creativity is proposed encompassing theoretical, methodological and empirical developments in science. We then apply this typology through a process of creative research event identification in the fields of nanotechnology and human genetics in Europe and the United States, combining nominations made by several hundred experts with data on prize winners. Characteristics of creative research in the two respective fields are analyzed, and there is a discussion of broader insights offered by our approach. --

    Understanding recovery: the perspective of substance misusing offenders

    Get PDF
    Purpose – The purpose of this paper is to critically regard the concept of recovery from the perspective of substance misusing offenders. It intended to understand how these individuals came to define recovery by asking “what does recovery mean to you?” Design/methodology/approach – In total, 35 semi-structured interviews were undertaken with individuals with a history of heroin and crack cocaine use as well as convictions for a range of offences. Interviews took place in both prison and community settings, reflecting a spectrum of experience. Findings – Whilst the constellation of recovery varied, it was at times made up of the same “stars” – and some re-occurring themes emerged; recovery was transient, fragile and unpredictable, it was ongoing, lacking a definitive end, it was more than abstinence and often involved a total psychological overhaul, recovery was about reintegrating with society and feeling “normal”. Practical implications – Practitioners and services need to value the individual interpretations of recovery rather than being prescriptive around what it “should” look like. The components of recovery that were raised by participants permit specific recommendations for practice to be made. Originality/value – This study sought the perspectives of those actually affected by and experiencing drug treatment in the Criminal Justice System. It allowed participants to tell their story without preconceived ideas or hypotheses, putting their voice at the centre of the stage. The study uses feedback from the ground to make informed recommendations for practice. </jats:sec

    Tackling the stacking disorder of melon—structure elucidation in a semicrystalline material

    Get PDF
    In this work we tackle the stacking disorder of melon, a layered carbon imide amide polymer with the ideal composition (C6N7(NH)(NH2)). Although its existence has been postulated since 1834 the structure of individual melon layers could only recently be solved via electron diffraction and high-resolution 15N solid-state NMR spectroscopy. With only weak van der Waals interactions between neighboring layers its long range stacking order is poorly defined preventing an efficient use of diffraction techniques. We, therefore, rely on a combination of solid-sate NMR experiments and force field calculations. The key information is obtained based on heteronuclear (1H–13C) and homonuclear (1H–1H) second moments M2 acquired from 1H–13C cross polarization experiments. To allow for an interpretation of the polarization transfer rates the resonances in the 13C MAS spectra have to be assigned and the hydrogen atoms have to be located. The assignment was performed using a two-dimensional 15N–13C iDCP experiment. For the determination of the position of the hydrogen atoms NH and HH distances were measured via 1H–15N Lee–Goldburg CP and 1H–1H double-quantum build-up curves, respectively. Furthermore, the homogeneity of the material under examination was investigated exploiting 15N spin-diffusion. Based on force field methods 256 structure models with varying lateral arrangements between neighboring layers were created. For each model the M2 were calculated allowing them to be ranked by comparing calculated and measured M2 as well as via their force field energies. This allows the creation of markedly structured hypersurfaces with two distinctly favored shift vectors for the displacement of neighboring layers

    Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride:  Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies

    Get PDF
    Single-phase melem (2,5,8-triamino-tri-s-triazine) C6N7(NH2)3 was obtained as a crystalline powder by thermal treatment of different less condensed C−N−H compounds (e.g., melamine C3N3(NH2)3, dicyandiamide H4C2N4, ammonium dicyanamide NH4[N(CN)2], or cyanamide H2CN2, respectively) at temperatures up to 450°C in sealed glass ampules. The crystal structure was determined ab initio by X-ray powder diffractometry (Cu Kα1:  P21/c (No. 14), a = 739.92(1) pm, b = 865.28(3) pm, c = 1338.16(4) pm, ÎČ = 99.912(2)°, and Z = 4). In the solid, melem consists of nearly planar C6N7(NH2)3 molecules which are arranged into parallel layers with an interplanar distance of 327 pm. Detailed 13C and 15N MAS NMR investigations were performed. The presence of the triamino form instead of other possible tautomers was confirmed by a CPPI (cross-polarization combined with polarization inversion) experiment. Furthermore, the compound was characterized using mass spectrometry, vibrational (IR, Raman), and photoluminescence spectroscopy. The structural and vibrational properties of molecular melem were theoretically studied on both the B3LYP and the MP2 level. A structural optimization in the extended state was performed employing density functional methods utilizing LDA and GGA. A good agreement was found between the observed and calculated structural parameters and also for the vibrational frequencies of melem. According to temperature-dependent X-ray powder diffractometry investigations above 560°C, melem transforms into a graphite-like C−N material

    Structure elucidation of polyheptazine imide by electron diffraction — a templated 2D carbon nitride networkw

    Get PDF
    Structure elucidation of a condensed carbon IV) nitride with a stoichiometry close to C3N4 by electron diffraction reveals a two-dimensional planar heptazine-based network containing isolated melamine molecules in the trigonal voids

    A Theoretical and Experimental Study on the Lewis Acid−Base Adducts (P4E3)·(BX3) (E = S, Se; X = Br, I) and (P4Se3)·(NbCl5)

    Get PDF
    The Lewis acid−base adducts (P4E3)·(BX3) (E = S, Se; X = Br, I) and (P4Se3)·(NbCl5) have been prepared and characterized by Raman, IR, and solid-state 31P MAS NMR spectroscopy. Hybrid density functional calculations (B3LYP) have been carried out for both the apical and the basal (P4E3)·(BX3) (E = S, Se; X = Br, I) adducts. The thermodynamics of all considered species has been discussed. In accordance with solid-state 31P MAS NMR and vibrational data, the X-ray powder diffraction structures of (P4S3)·(BBr3) [monoclinic, space group P21/m (No. 11), a = 8.8854(1) Å, b = 10.6164(2) Å, c = 6.3682(1) Å, ÎČ = 108.912(1)°, V = 568.29(2) Å3, Z = 2] and (P4S3)·(BI3) [orthorhombic, space group Pnma (No. 62), a = 12.5039(5) Å, b = 11.3388(5) Å, c = 8.9298(4) Å, V = 1266.09(9) Å3, Z = 4] indicate the formation of an apical P4S3 complex in the reaction of P4S3 with BX3 (X = Br, I). Basal adducts are formed when P4Se3 is used as the donor species. Vibrational assignment for the normal modes of these adducts has been made on the basis of comparison between theoretically obtained and experimentally observed vibrational data
    • 

    corecore